The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393...The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.展开更多
Three compounds modeled on the lignite structure were chosen for experimental degradation by different fungi strains. Culture conditions and extracellular enzyme activities were optimized. The growth curves of the str...Three compounds modeled on the lignite structure were chosen for experimental degradation by different fungi strains. Culture conditions and extracellular enzyme activities were optimized. The growth curves of the strains were determined to study mycelium dry weight and protein content changes. Gas chromatography and infrared spectroscopy were used to detect changes of functional groups before and after the action of the fungi on the model compounds. Possible decomposition products and degrada-tion mechanisms were proposed. The research findings show that C. Versicolor and Golden Mushroom can grow in presence of the model compounds. The optimum culture conditions were a pH of 6.0, a carbon-nitrogen ratio of five and a Tween-80 concentration of 0.1%. Newly produced substances were found by gas chromatography. Infrared analysis showed that the model compounds degraded under the action of the microorganisms.展开更多
Three kinds of new layered perovskite compounds with Ruddlesden-Popper (R-P) phase, AgrNa2-xLa2Ti3O10 (x = 0.2, 0.3 and 0.5), were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution. The s...Three kinds of new layered perovskite compounds with Ruddlesden-Popper (R-P) phase, AgrNa2-xLa2Ti3O10 (x = 0.2, 0.3 and 0.5), were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution. The structures of the compounds were characterized by EDX and XRD, and their antibacterial activity and light-resistance property were evaluated. The results indicated that the molecular formula of AgxNa2-xLa2Ti3O10 (x = 0.2, 0.3 and 0.5) was confirmed, and that the crystalline structure of Na2La2Ti3O10 was not obviously affected by exchange of silver ion. The minimum inhibitory concentrations (MICs) of Ag0.3Na1.7La2Ti3O10 against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) were 180 μg/mL and 240 μg/mL, respectively, while its discoloration was not observed after 24 h light ageing test.展开更多
The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered ball...The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased.展开更多
Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue therm...Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.展开更多
A novel white emitting organic diode has been simply realized by inserting a doped hole-blocking layer between the hole transporting layer(HTL)and the electron transporting layer(ETL).The structure of this device is I...A novel white emitting organic diode has been simply realized by inserting a doped hole-blocking layer between the hole transporting layer(HTL)and the electron transporting layer(ETL).The structure of this device is ITO/CuPc/NPB/blocking layer:rubrene/Alq/MgAg.Copper phthalocyanine(CuPc)was used as a buffer layer,N,N'-bis-(1-naphthy1)-N,N'-DIPHENYL-1'-biphenyl-4,4'-diamine(NPB)as te HTL,and trimer of complex(Alq) as ETL.Indium tin oxide and MgAg were the anode and cathode,respectively.The emission spectrum of this device covers a wide range of visible region and can be sensitively adjusted by the concentration of rebrene.The white emission with the CIE(Commission International de l'Eclairage)color coordinates x=0.31,y=0.32,a maximum luminance of 8635 cd/m2,and the luminous efficiency 1.39lm/W at the luminance of 100 cd/m2 were obtained in the device with 1.5% rebrene concentration in TPBi.展开更多
Organic bulk heterojunction fullerence(C60) doped 5, 6, 11, 12-tetraphenylnaphthacene(rubrene) as the high quality charge generation layer(CGL) with high transparency and superior charge generating capability for tand...Organic bulk heterojunction fullerence(C60) doped 5, 6, 11, 12-tetraphenylnaphthacene(rubrene) as the high quality charge generation layer(CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes(OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of(0.40, 0.35) at 100 cd/m2 and(0.36, 0.34) at 1000 cd/m2 have been demonstrated by employing the developed CGL, respectively.展开更多
In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, ...In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.展开更多
New layered perovskite compounds, AgxNa2-xLa2Ti3O10 (x=0.2, 0.3 and 0.5) were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution and characterized by energy dispersive X-ray analysis(EDX), X-r...New layered perovskite compounds, AgxNa2-xLa2Ti3O10 (x=0.2, 0.3 and 0.5) were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution and characterized by energy dispersive X-ray analysis(EDX), X-ray diffractometry(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The ion-exchange processes were optimized, and the antibacterial activity, light permanency and water-resistance were evaluated. Surprisedly, no significant changes in crystal structure of Na2La2Ti3O10 are found by the exchange of silver ions. The Ag0.3Na1.7La2Ti3O10 particles conglomerate obviously with irregular shape and size. Ag0.3Na1.7La2Ti3O10, possessing the minimum inhibitory concentrations(MICs) against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) of 180 mg/L and 240 mg/L, has high antibacterial activity, good light permanency and water-resistance. The ionic state silver in AgxNa2-xLa2Ti3O10 is the antibacterial active component.展开更多
The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this...The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, l.SCr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 urn thick and consisted of the intermetallic compound FeCr with an average grain size of 25±10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.展开更多
In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ...In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.展开更多
Thin heavily Mg-doped InGaN and GaN compound contact layer is used to form Ni/Au Ohmic contact to p-GaN. The growth conditions of the compound contact layer and its effect on the performance of Ni/Au Ohmic contact to ...Thin heavily Mg-doped InGaN and GaN compound contact layer is used to form Ni/Au Ohmic contact to p-GaN. The growth conditions of the compound contact layer and its effect on the performance of Ni/Au Ohmic contact to p-GaN are investigated. It is confirmed that the specific contact resistivity can be lowered nearly two orders by optimizing the growth conditions of compound contact layer. When the flow rate ratio between Mg and Ga gas sources of p++-InGaN layer is 10.6% and the thickness of p++-InGaN layer is 3 nm, the lowest specific contact resistivity of 3.98× 10-5 Ω cm2 is achieved. In addition, the experimental results indicate that the specific contact resistivity can be further lowered to 1.07 × 10-7Ω.cm2 by optimizing the alloying annealing temperature to 520 ℃.展开更多
Abstract:Hybrid inorganic/organic white organic light emitting diodes(hybrid-WOLEDs)are fabricated by combi-ning the blue phosphorescent organic light emitting diodes(PHOLEDs)with red Sr2SiO4:Eu3+phosphor spin coateda...Abstract:Hybrid inorganic/organic white organic light emitting diodes(hybrid-WOLEDs)are fabricated by combi-ning the blue phosphorescent organic light emitting diodes(PHOLEDs)with red Sr2SiO4:Eu3+phosphor spin coatedas a color conversion layer(CCL)over the other side of glass substrate on the devices.The basic configuration of thePHOLEDs consists a host material,N,N'-dicarbazolyl-3,5-benzene(mCP)which doped with a blue phosphorescentiridium complexes iridium(Ⅲ)bis[(4,6-di-fluorophenyl)-pyridinato-N-C2'](FIrpic)to produce high efficient blueorganic light emitting diodes.The hybrid-WOLED shows maximum luminous efficiency of 22.1 cd/A,maximumpower efficiency of 11.26 lm/W,external quantum efficiency of 10.2%and CIE coordinates of(0.32,0.34).Mo-reover,the output spectra and CIE coordinates of the hybrid-WOLED have a small shift in different driving currentdensity,which demonstrate good color stability.展开更多
Layered compound zirconium bis(monohydrogenphosphate)(alpha-ZrP) intercalated with rare earth complex Eu(DBM)(3)phen was prepared. The pre-intercalation of p-methoxyaniline into alpha-ZrP makes the interlayer separati...Layered compound zirconium bis(monohydrogenphosphate)(alpha-ZrP) intercalated with rare earth complex Eu(DBM)(3)phen was prepared. The pre-intercalation of p-methoxyaniline into alpha-ZrP makes the interlayer separation large enough to exchange PMA with europium complex, thus, the luminescent assembly was prepared. This was confirmed by X-ray diffraction, UV-visible spectra and elemental analysis. The fluorescence spectra and lifetime of the assembly were also presented.展开更多
A silicon-on-insulator (SOI) high performance lateral double-diffusion metal oxide semiconductor (LDMOS) on a compound buried layer (CBL) with a step buried oxide (SBO CBL SOI) is proposed. The step buried oxi...A silicon-on-insulator (SOI) high performance lateral double-diffusion metal oxide semiconductor (LDMOS) on a compound buried layer (CBL) with a step buried oxide (SBO CBL SOI) is proposed. The step buried oxide locates holes in the top interface of the upper buried oxide (UBO) layer. Furthermore, holes with high density are collected in the interface between the polysilicon layer and the lower buried oxide (LBO) layer. Consequently, the electric fields in both the thin LBO and the thick UBO are enhanced by these holes, leading to an improved breakdown voltage. The breakdown voltage of the SBO CBL SOI LDMOS increases to 847 V from the 477 V of a conventional SOI with the same thicknesses of SOI layer and the buried oxide layer. Moreover, SBO CBL SOI can also reduce the self-heating effect.展开更多
The energies and the magnetization of an electron in a piece of metal in the structure of Metal/Insulator/Metal/Insulator… (M/I/M/I…), in a magnetic field, at high temperature, and in range of quantum size thickness...The energies and the magnetization of an electron in a piece of metal in the structure of Metal/Insulator/Metal/Insulator… (M/I/M/I…), in a magnetic field, at high temperature, and in range of quantum size thickness of the piece of metal layer have been obtained. The results show that when the thickness of the metal layer becomes smaller, the orbital magnetism of the charged particles which collide with the wall of the metal layer is to vary from diamagnetism to paramagnetism. The smaller the thickness of the metal layer becomes, the more particles will collide with the boundary of the metal layer, and then the paramagnetism becomes stronger. Finally, when the thickness of the metal layer becomes very small (<100 nm), all of the orbital diamagnetism will reverse to paramagnetism, and then the paramagnetization will be almost a maximum constant.展开更多
With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the com...With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the compound layer. The results show that the compound layer of plasma nitriding can delay the nucleation of heat cracks and hold back the propagation of heat cracks from surface to substrate because of its high hardness and strength. On the other land, the heat checking expands faster with the compound layer on the surface than that without it. After 3000 cycles of thermal fatigue test, both heat cracks with the compound layer are wider than the another without compound layer and the number of heat cracks of the former is more from the view of cross section.展开更多
The valence electron structure (VES) in compound layer of steel plasma-nitrided at 560°C with rare earth (RE) addition was calculated based on the empirical electron theory (EET) of solids and molecules and BLD m...The valence electron structure (VES) in compound layer of steel plasma-nitrided at 560°C with rare earth (RE) addition was calculated based on the empirical electron theory (EET) of solids and molecules and BLD method. The results show that the presence of RE atoms diffused into surface layer leads to an increase of phase structure factor, which explains the catalyzing and micro-alloying effects of RE.展开更多
Far-infraraed spoctra of the title compounds (adr.CnCuX) have been studied. Empirical assignments of the main badns have been made. The solid- solid phase transition at Tp=38℃ in CaCuCL compound has been investigated...Far-infraraed spoctra of the title compounds (adr.CnCuX) have been studied. Empirical assignments of the main badns have been made. The solid- solid phase transition at Tp=38℃ in CaCuCL compound has been investigated by the far-infrared spectra with variation of temperatures. It is found that the solid-solid phase transition of this compound waw accompanied by the distortion disorder of the MCL52- octahedra.展开更多
White layers in hard turned surfaces were identified and measured as a function ot turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool fl...White layers in hard turned surfaces were identified and measured as a function ot turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.展开更多
基金Project (2011CB606301) supported by the National Basic Research Program of ChinaProject (20212339) supported by the Doctor Startup Foundation Program of Shenyang University,China
文摘The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation.
基金Financial support for this research, provided by the National Natural Science Foundation of China (Nos.50874107, 50921002 and 50374068)the Key Laboratory of Coal Processing & Efficient Utilization Foundation of Ministry of Education of China (No.CPEUKF06-12), are gratefully acknowl-edged
文摘Three compounds modeled on the lignite structure were chosen for experimental degradation by different fungi strains. Culture conditions and extracellular enzyme activities were optimized. The growth curves of the strains were determined to study mycelium dry weight and protein content changes. Gas chromatography and infrared spectroscopy were used to detect changes of functional groups before and after the action of the fungi on the model compounds. Possible decomposition products and degrada-tion mechanisms were proposed. The research findings show that C. Versicolor and Golden Mushroom can grow in presence of the model compounds. The optimum culture conditions were a pH of 6.0, a carbon-nitrogen ratio of five and a Tween-80 concentration of 0.1%. Newly produced substances were found by gas chromatography. Infrared analysis showed that the model compounds degraded under the action of the microorganisms.
文摘Three kinds of new layered perovskite compounds with Ruddlesden-Popper (R-P) phase, AgrNa2-xLa2Ti3O10 (x = 0.2, 0.3 and 0.5), were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution. The structures of the compounds were characterized by EDX and XRD, and their antibacterial activity and light-resistance property were evaluated. The results indicated that the molecular formula of AgxNa2-xLa2Ti3O10 (x = 0.2, 0.3 and 0.5) was confirmed, and that the crystalline structure of Na2La2Ti3O10 was not obviously affected by exchange of silver ion. The minimum inhibitory concentrations (MICs) of Ag0.3Na1.7La2Ti3O10 against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) were 180 μg/mL and 240 μg/mL, respectively, while its discoloration was not observed after 24 h light ageing test.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFC0210000)the National Natural Science Foundation of China(Grant Nos.41705113 and 41877312)+1 种基金the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,Chinese Academy of Sciences(Grant No.CERAE201802)a Beijing Major Science and Technology Project(Grant No.Z181100005418014).
文摘The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675041 and 61605253)the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(Grant No.61421002)the Science&Technology Department Program of Sichuan Province,China(Grant No.2016HH0027)
文摘Fluorescence/phosphorescence hybrid white organic light-emitting devices(WOLEDs) based on double emitting layers(EMLs) with high color stability are fabricated.The simplified EMLs consist of a non-doped blue thermally activated delayed fluorescence(TADF) layer using 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone(DMAC-DPS) and an ultrathin non-doped yellow phosphorescence layer employing bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)((tbt)_2Ir(acac)).Two kinds of materials of 4,7-diphenyl-1,10-phenanthroline(Bphen) and 1,3,5-tris(2-Nphenylbenzimidazolyl) benzene(TPBi) are selected as the electron transporting layer(ETL),and the thickness of yellow EML is adjusted to optimize device performance.The device based on a 0.3-nm-thick yellow EML and Bphen exhibits high color stability with a slight Commission International de l'Eclairage(CIE) coordinates variation of(0.017,0.009) at a luminance ranging from 52 cd/m^2 to 6998 cd/m^2.The TPBi-based device yields a high efficiency with a maximum external quantum efficiency(EQE),current efficiency,and power efficiency of 10%,21.1 cd/A,and 21.3 lm/W,respectively.The ultrathin yellow EML suppresses hole trapping and short-radius Dexter energy transfer,so that Forster energy transfer(FRET)from DMAC-DPS to(tbt)_2Ir(acac) is dominant,which is beneficial to keep the color stable.The employment of TPBi with higher triplet excited state effectively alleviates the triplet exciton quenching by ETL to improve device efficiency.
基金Supported by the National Natural Science Foundation of China under Grant Nos.59790050 and 69687002,and Shanghai Education Committee.
文摘A novel white emitting organic diode has been simply realized by inserting a doped hole-blocking layer between the hole transporting layer(HTL)and the electron transporting layer(ETL).The structure of this device is ITO/CuPc/NPB/blocking layer:rubrene/Alq/MgAg.Copper phthalocyanine(CuPc)was used as a buffer layer,N,N'-bis-(1-naphthy1)-N,N'-DIPHENYL-1'-biphenyl-4,4'-diamine(NPB)as te HTL,and trimer of complex(Alq) as ETL.Indium tin oxide and MgAg were the anode and cathode,respectively.The emission spectrum of this device covers a wide range of visible region and can be sensitively adjusted by the concentration of rebrene.The white emission with the CIE(Commission International de l'Eclairage)color coordinates x=0.31,y=0.32,a maximum luminance of 8635 cd/m2,and the luminous efficiency 1.39lm/W at the luminance of 100 cd/m2 were obtained in the device with 1.5% rebrene concentration in TPBi.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60906022), the Natural Science Foundation of Tianjin, China (Grant No. 10JCYBJC01100), the Scientific Developing Foundation of Tianjin Education Commission, China (Grant No. 2011ZD02), and the Tianjin Natural Science
文摘Organic bulk heterojunction fullerence(C60) doped 5, 6, 11, 12-tetraphenylnaphthacene(rubrene) as the high quality charge generation layer(CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes(OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of(0.40, 0.35) at 100 cd/m2 and(0.36, 0.34) at 1000 cd/m2 have been demonstrated by employing the developed CGL, respectively.
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2009CB930600)the National Natural Science Founda-tion of China(Grant Nos.61274065,60907047,51173081,and 61136003)the"333"and"Qing Lan"Program of Jiangsu Province,and the"Qing Lan"and"Pandeng"Project of Nanjing University of Posts and Telecommunications(Grant Nos.NY210040,NY211069,and NY 210015)
文摘In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.
基金Projects(20676049, 50472077) supported by the National Natural Science Foundation of ChinaProjects(05200555+1 种基金 2004B20201026) supported by the Natural Science Foundation of Guangdong Province of ChinaProject(2005Z3-D212) supported by the Science and Technology Project Fund of Guangzhou City of China
文摘New layered perovskite compounds, AgxNa2-xLa2Ti3O10 (x=0.2, 0.3 and 0.5) were synthesized by an ion-exchange reaction of Na2La2Ti3O10 with AgNO3 solution and characterized by energy dispersive X-ray analysis(EDX), X-ray diffractometry(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). The ion-exchange processes were optimized, and the antibacterial activity, light permanency and water-resistance were evaluated. Surprisedly, no significant changes in crystal structure of Na2La2Ti3O10 are found by the exchange of silver ions. The Ag0.3Na1.7La2Ti3O10 particles conglomerate obviously with irregular shape and size. Ag0.3Na1.7La2Ti3O10, possessing the minimum inhibitory concentrations(MICs) against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) of 180 mg/L and 240 mg/L, has high antibacterial activity, good light permanency and water-resistance. The ionic state silver in AgxNa2-xLa2Ti3O10 is the antibacterial active component.
基金supported by the National Natural Science Foundation of Chinathe Chinese Academy of Sciences
文摘The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, l.SCr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 urn thick and consisted of the intermetallic compound FeCr with an average grain size of 25±10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51601108 and 52071191)the Natural Science Foundation of Shandong Province(ZR2020ME011).
文摘In this study,the effects of intermetallic compounds(Mg_(17)Al_(12)and Al_(8)Mn_(5))on the Mg-Al layered double hydroxide(LDH)formation mechanism and corrosion behavior of an in-situ LDH/Mg(OH)_(2)steam coatings on AZ80 Mg alloy were investigated.Citric acid(CA)was used to activate the alloy surface during the pretreatment process.The alloy was first pretreated with CA and then subjected to a hydrothermal process using ultrapure water to produce Mg-Al-LDH/Mg(OH)_(2)steam coating.The effect of different time of acid pretreatment on the activation of the intermetallic compounds was investigated.The microstructure and elemental composition of the obtained coatings were analyzed using FE-SEM,EDS,XRD and FT-IR.The corrosion resistance of the coated samples was evaluated using different techniques,i.e.,potentiodynamic polarization(PDP),electrochemical impedance spectrum(EIS)and hydrogen evolution test.The results indicated that the CA pretreatment significantly influenced the activity of the alloy surface by exposing the intermetallic compounds.The surface area fraction of Mg_(17)Al_(12)and Al_(8)Mn_(5)phases on the surface of the alloy was significantly higher after the CA pretreatment,and thus promoted the growth of the subsequent Mg-Al-LDH coatings.The CA pretreatment for 30 s resulted in a denser and thicker LDH coating.Increase in the CA pretreatment time significantly led to the improvement in corrosion resistance of the coated AZ80 alloy.The corrosion current density of the coated alloy was lower by three orders of magnitude as compared to the uncoated alloy.
基金support by the National Natural Science Foundation of China(Grant Nos.61474110,61377020,61376089,61223005,and 61176126)the National Science Fund for Distinguished Young Scholars,China(Grant No.60925017)
文摘Thin heavily Mg-doped InGaN and GaN compound contact layer is used to form Ni/Au Ohmic contact to p-GaN. The growth conditions of the compound contact layer and its effect on the performance of Ni/Au Ohmic contact to p-GaN are investigated. It is confirmed that the specific contact resistivity can be lowered nearly two orders by optimizing the growth conditions of compound contact layer. When the flow rate ratio between Mg and Ga gas sources of p++-InGaN layer is 10.6% and the thickness of p++-InGaN layer is 3 nm, the lowest specific contact resistivity of 3.98× 10-5 Ω cm2 is achieved. In addition, the experimental results indicate that the specific contact resistivity can be further lowered to 1.07 × 10-7Ω.cm2 by optimizing the alloying annealing temperature to 520 ℃.
基金Project supported by the National Science Council of the Republic of China(101-2221-E-214-016)the financial supporitng of ISU99-01-06the MANALAB at ISU,Taiwan
文摘Abstract:Hybrid inorganic/organic white organic light emitting diodes(hybrid-WOLEDs)are fabricated by combi-ning the blue phosphorescent organic light emitting diodes(PHOLEDs)with red Sr2SiO4:Eu3+phosphor spin coatedas a color conversion layer(CCL)over the other side of glass substrate on the devices.The basic configuration of thePHOLEDs consists a host material,N,N'-dicarbazolyl-3,5-benzene(mCP)which doped with a blue phosphorescentiridium complexes iridium(Ⅲ)bis[(4,6-di-fluorophenyl)-pyridinato-N-C2'](FIrpic)to produce high efficient blueorganic light emitting diodes.The hybrid-WOLED shows maximum luminous efficiency of 22.1 cd/A,maximumpower efficiency of 11.26 lm/W,external quantum efficiency of 10.2%and CIE coordinates of(0.32,0.34).Mo-reover,the output spectra and CIE coordinates of the hybrid-WOLED have a small shift in different driving currentdensity,which demonstrate good color stability.
文摘Layered compound zirconium bis(monohydrogenphosphate)(alpha-ZrP) intercalated with rare earth complex Eu(DBM)(3)phen was prepared. The pre-intercalation of p-methoxyaniline into alpha-ZrP makes the interlayer separation large enough to exchange PMA with europium complex, thus, the luminescent assembly was prepared. This was confirmed by X-ray diffraction, UV-visible spectra and elemental analysis. The fluorescence spectra and lifetime of the assembly were also presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60806025 and 60976060)in part by the State Key Laboratory of Electronic Thin Films and Integrated Devices,China (Grant No.CXJJ201004)
文摘A silicon-on-insulator (SOI) high performance lateral double-diffusion metal oxide semiconductor (LDMOS) on a compound buried layer (CBL) with a step buried oxide (SBO CBL SOI) is proposed. The step buried oxide locates holes in the top interface of the upper buried oxide (UBO) layer. Furthermore, holes with high density are collected in the interface between the polysilicon layer and the lower buried oxide (LBO) layer. Consequently, the electric fields in both the thin LBO and the thick UBO are enhanced by these holes, leading to an improved breakdown voltage. The breakdown voltage of the SBO CBL SOI LDMOS increases to 847 V from the 477 V of a conventional SOI with the same thicknesses of SOI layer and the buried oxide layer. Moreover, SBO CBL SOI can also reduce the self-heating effect.
基金Supported by the National Natural Science Foundation of China(5 96 0 2 0 0 4)
文摘The energies and the magnetization of an electron in a piece of metal in the structure of Metal/Insulator/Metal/Insulator… (M/I/M/I…), in a magnetic field, at high temperature, and in range of quantum size thickness of the piece of metal layer have been obtained. The results show that when the thickness of the metal layer becomes smaller, the orbital magnetism of the charged particles which collide with the wall of the metal layer is to vary from diamagnetism to paramagnetism. The smaller the thickness of the metal layer becomes, the more particles will collide with the boundary of the metal layer, and then the paramagnetism becomes stronger. Finally, when the thickness of the metal layer becomes very small (<100 nm), all of the orbital diamagnetism will reverse to paramagnetism, and then the paramagnetization will be almost a maximum constant.
文摘With the Uddeholm self restricted method, the effect of compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 steel was studied by the way of adding Ar during plasma nitriding to remove the compound layer. The results show that the compound layer of plasma nitriding can delay the nucleation of heat cracks and hold back the propagation of heat cracks from surface to substrate because of its high hardness and strength. On the other land, the heat checking expands faster with the compound layer on the surface than that without it. After 3000 cycles of thermal fatigue test, both heat cracks with the compound layer are wider than the another without compound layer and the number of heat cracks of the former is more from the view of cross section.
基金support from the key laboratory foundation of precision hot forming for national defense science and technology.
文摘The valence electron structure (VES) in compound layer of steel plasma-nitrided at 560°C with rare earth (RE) addition was calculated based on the empirical electron theory (EET) of solids and molecules and BLD method. The results show that the presence of RE atoms diffused into surface layer leads to an increase of phase structure factor, which explains the catalyzing and micro-alloying effects of RE.
文摘Far-infraraed spoctra of the title compounds (adr.CnCuX) have been studied. Empirical assignments of the main badns have been made. The solid- solid phase transition at Tp=38℃ in CaCuCL compound has been investigated by the far-infrared spectra with variation of temperatures. It is found that the solid-solid phase transition of this compound waw accompanied by the distortion disorder of the MCL52- octahedra.
基金The Ministry of Education of China"985"of International cooperation project"Clean Manufactur-ing Technology"
文摘White layers in hard turned surfaces were identified and measured as a function ot turning parameters based on the Taguchi method. It reveals that white layers generate on the machine surface in the absence of tool flank wear, and white layer depth varies with the different combinations of hard turning parameters. Turning speed has the most important impact on white layer depth, feed rate follows, and cutting depth at last. The white layer generation consequently suggests a strong couple relation to the heat generation and thermal process of hard turning operation. White layer disappears under an optimal combination of turning parameters by Taguchi method. It suggests that a superior surface integrity without white layer is feasible under some selected combinations of turning parameters by a sharp CBN cutting tool.