A high power buck-boost switch-mode LED driver delivering a constant 350 mA with a power efficient current sensing scheme is presented in this paper. The LED current is extracted by differentiating the output capacito...A high power buck-boost switch-mode LED driver delivering a constant 350 mA with a power efficient current sensing scheme is presented in this paper. The LED current is extracted by differentiating the output capacitor voltage and maintained by a feedback. The circuit has been fabricated in a standard 0.35 μm AMS CMOS process. Measurement results demonstrated a power-conversion efficiency over 90% with a line regulation of 8%/V for input voltage of 3.3 V and current output between 200 mA and 350 mA.展开更多
A novel integrated circuit for driving LED lighting has been proposed, designed and fabricated. Besides the typical parts of LED driver, an integral part was added at the output terminal of error amplifier in the driv...A novel integrated circuit for driving LED lighting has been proposed, designed and fabricated. Besides the typical parts of LED driver, an integral part was added at the output terminal of error amplifier in the driver. In this way, a novel average current mode can be set up to take the place ordinary peak current control mode. In addition, a BUCK low-level topology was adopted, too. It can be used to drive up to eight 1 W HB LED lights with 350 mA constant current. In this way, the LED driver displays high performance, in which output current with less 1% error and total efficiency as high as 96%. The feasibility of the design has been verified by actual measurement on the fabricated chip.展开更多
This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of b...This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.展开更多
文摘A high power buck-boost switch-mode LED driver delivering a constant 350 mA with a power efficient current sensing scheme is presented in this paper. The LED current is extracted by differentiating the output capacitor voltage and maintained by a feedback. The circuit has been fabricated in a standard 0.35 μm AMS CMOS process. Measurement results demonstrated a power-conversion efficiency over 90% with a line regulation of 8%/V for input voltage of 3.3 V and current output between 200 mA and 350 mA.
文摘A novel integrated circuit for driving LED lighting has been proposed, designed and fabricated. Besides the typical parts of LED driver, an integral part was added at the output terminal of error amplifier in the driver. In this way, a novel average current mode can be set up to take the place ordinary peak current control mode. In addition, a BUCK low-level topology was adopted, too. It can be used to drive up to eight 1 W HB LED lights with 350 mA constant current. In this way, the LED driver displays high performance, in which output current with less 1% error and total efficiency as high as 96%. The feasibility of the design has been verified by actual measurement on the fabricated chip.
文摘This research describes an integrated multi-channel high accuracy current control LED (light emitting diode) driver with low dropout regulator implemented in a 0.35μm TSMC 2P4M CMOS process. With the new trend of backlighting applications for mobile electronics and portable devices requiring a smaller size, lower cost, lesser noise and accurate current control LED driver, it came up with the idea of integrating more than one design features within a single chip. The analysis of using a capacitor-less low dropout regulator to power the constant current source has been explored, with the implementation of wide range battery voltage of 3 V to 5 V. Possible load current variations were introduced and verified to output a fixed voltage of 2.8 V. A regulated cascode current mirror structure forms the multi-channel configuration string of LED's; the design ensures a current matching of less than 1% error and achieves a high accuracy current control of less than 1% error, regardless of the LED's forward voltage variation. Moreover, for high end portable device with multimedia applications, dimming frequency can be set to 10 MHz. In addition, a switching output is a better approach for managing LED's contrast and brightness adjustment as well as maximizing power consumption, ensuring longer life for driving string of LEDs.