An efficient rule-based algorithm is presented for haplotype inference from general pedigree genotype data, with the assumption of no recombination. This algorithm generalizes previous algorithms to handle the cases w...An efficient rule-based algorithm is presented for haplotype inference from general pedigree genotype data, with the assumption of no recombination. This algorithm generalizes previous algorithms to handle the cases where some pedigree founders are not genotyped, provided that for each nuclear family at least one parent is genotyped and each non-genotyped founder appears in exactly one nuclear family. The importance of this generalization lies in that such cases frequently happen in real data, because some founders may have passed away and their genotype data can no longer be collected. The algorithm runs in O(m^3n^3) time, where m is the number of single nucleotide polymorphism (SNP) loci under consideration and n is the number of genotyped members in the pedigree. This zero-recombination haplotyping algorithm is extended to a maximum parsimoniously haplotyping algorithm in one whole genome scan to minimize the total number of breakpoint sites, or equivalently, the number of maximal zero-recombination chromosomal regions. We show that such a whole genome scan haplotyping algorithm can be implemented in O(m^3n^3) time in a novel incremental fashion, here m denotes the total number of SNP loci along the chromosome.展开更多
An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical...An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 com-plex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak.展开更多
基金supported in part by AARI,AICML,ALIDF,iCORE,and NSERC
文摘An efficient rule-based algorithm is presented for haplotype inference from general pedigree genotype data, with the assumption of no recombination. This algorithm generalizes previous algorithms to handle the cases where some pedigree founders are not genotyped, provided that for each nuclear family at least one parent is genotyped and each non-genotyped founder appears in exactly one nuclear family. The importance of this generalization lies in that such cases frequently happen in real data, because some founders may have passed away and their genotype data can no longer be collected. The algorithm runs in O(m^3n^3) time, where m is the number of single nucleotide polymorphism (SNP) loci under consideration and n is the number of genotyped members in the pedigree. This zero-recombination haplotyping algorithm is extended to a maximum parsimoniously haplotyping algorithm in one whole genome scan to minimize the total number of breakpoint sites, or equivalently, the number of maximal zero-recombination chromosomal regions. We show that such a whole genome scan haplotyping algorithm can be implemented in O(m^3n^3) time in a novel incremental fashion, here m denotes the total number of SNP loci along the chromosome.
基金Supported by the National Key Technologies Research and Development Program (Grant No. 2005BA711A09)from the Ministry of Science and Technology of China
文摘An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 com-plex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak.