Backflling represents an environmentally friendly mining waste disposal technique.It is increasingly used in underground mines all over the world.However,its primary purpose remains to improve ground stability and to ...Backflling represents an environmentally friendly mining waste disposal technique.It is increasingly used in underground mines all over the world.However,its primary purpose remains to improve ground stability and to reduce ore dilution.Previous investigations have shown that fll drainage plays a key role in backfll and barricade design.With a poor drainage system in the backflled stope,the required dimension of barricade,which is constructed at the base of the stope near the drift entrance,has to be increased.A poor backfll drainage system can also lead to a signifcant increase in drainage waiting time and further reduction in mining productivity.In this paper,the drainage of conventional backfll design in backflled stopes is briefly reviewed.For the frst time,the application of the wick drain is introduced in the backfll within mine stopes.The drainage improvement from the introduction of the wick drain is illustrated using numerical modeling.展开更多
Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoin...Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoints to prevent in-rush of the fill slurry. To avoid barricade failures resulting from excessive backfill pressures, backfilling is typically performed with a plug pour followed by a final pour. The interval between the two pours should be shortened or removed to increase mining productivity and avoid pipe clogging. Recently, Li proposed to apply wick drains in backfilled stopes to promote drainage and consolidation. The preliminary simulations by considering an instantaneous filling indicated that the drainage of CPB can be significantly accelerated by using wick drains. Barricade was not considered. Here, some new numerical modeUings are presented with more representative filling sequences, stope geometry, and different draining configurations. The results illustrate that the stope can be backfilled continuously by using wick drains.展开更多
基金the financial support of School of Advanced Technology(FIRPSIRE-research+1 种基金FDETS)the Natural Sciences and Engineering Research Council of Canada(RGPIN)
文摘Backflling represents an environmentally friendly mining waste disposal technique.It is increasingly used in underground mines all over the world.However,its primary purpose remains to improve ground stability and to reduce ore dilution.Previous investigations have shown that fll drainage plays a key role in backfll and barricade design.With a poor drainage system in the backflled stope,the required dimension of barricade,which is constructed at the base of the stope near the drift entrance,has to be increased.A poor backfll drainage system can also lead to a signifcant increase in drainage waiting time and further reduction in mining productivity.In this paper,the drainage of conventional backfll design in backflled stopes is briefly reviewed.For the frst time,the application of the wick drain is introduced in the backfll within mine stopes.The drainage improvement from the introduction of the wick drain is illustrated using numerical modeling.
基金the Natural Sciences and Engineering Research Council of Canada (RGPIN)the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)the industrial partners of the Research Institute on Mines and the Environment (RIME UQAT-Polytechnique)
文摘Cemented paste backfill (CPB) is gaining popularity in many underground mines worldwide. Sufficient water is added into CPB to make a flowable material for pipe transportation. Barricades are built near the drawpoints to prevent in-rush of the fill slurry. To avoid barricade failures resulting from excessive backfill pressures, backfilling is typically performed with a plug pour followed by a final pour. The interval between the two pours should be shortened or removed to increase mining productivity and avoid pipe clogging. Recently, Li proposed to apply wick drains in backfilled stopes to promote drainage and consolidation. The preliminary simulations by considering an instantaneous filling indicated that the drainage of CPB can be significantly accelerated by using wick drains. Barricade was not considered. Here, some new numerical modeUings are presented with more representative filling sequences, stope geometry, and different draining configurations. The results illustrate that the stope can be backfilled continuously by using wick drains.