Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damp...Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.展开更多
Integration of renewable energy sources(RES)with a conventional power system has a detrimental effect on interarea oscillation.Most popular RESs are solar photovoltaic(PV)and wind energy conversion systems(WECS).Both ...Integration of renewable energy sources(RES)with a conventional power system has a detrimental effect on interarea oscillation.Most popular RESs are solar photovoltaic(PV)and wind energy conversion systems(WECS).Both solar PV power generation and WECS are integrated with power systems using a power electronic converter.Increasing the amount of RES generation lead towards reduction of system damping,which leads towards inter-area oscillation.Also,the intermittent behavior of a RES reduces the effectiveness of damping controllers.A dynamic controller based wide area damping controller(WADC)is proposed in this paper to increase small signal stability of a RES integrated power system.The WADC is designed for contemplating delay in a communication channel,communication failure and saturation.An anti-windup compensator is developed to overcome the effect of actuator saturation.However,the gain of the anti-windup compensator is calculated using LyapunovKrasovskii functional(LKF)in terms of linear matrix inequality(LMI).The actuator considered in this paper is a unified power flow controller(UPFC).Efficacy of PV and wind power integration on power system is also observed.The efficacy of the developed dynamic controller is verified using IEEE 39 bus and 68 bus power system.展开更多
In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of...In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.展开更多
This paper presents design of an self contained actuators unit in wide area damping control of power system in stabilizing system response for both nominal system condition and during actuator faults.First it is prese...This paper presents design of an self contained actuators unit in wide area damping control of power system in stabilizing system response for both nominal system condition and during actuator faults.First it is presented that use of multiple actuators in wide area control aid in improving damping in power system.A wide area damping controller feeding multiple actuators to satisfy multiple objectives in wide area damping control of power system is designed.Minimization of infinity norm of closed loop transfer function of power system with wide area controller in feedback path&closed loop poles placement techniques are used in controller synthesis.Second a reconfigurable control on the lines of fault hiding principle is added to the controller design to maintain system damping to pre-fault level in case of actuator faults.A reconfiguration component(RC)is activated on occurrence of actuator fault thereby reconfiguring system dynamics and redistributing wide area control signal among remaining active actuators.RC together with remaining active actuators and under same wide area damping controller maintains system damping to pre-fault level thereby preserving system dynamic response.In the reconfigurable control design presented here no new actuators outside the unit of actuators designed for wide area damping control is required.This makes for an self contained actuators unit in wide area damping control of power system both for nominal system condition and for system affected by actuator faults.A two area power system model is considered here for demonstrating effectiveness of designed robust damping controller with multiple outputs feeding multiple actuators in wide area control and illustrating the idea of self contained actuators unit for maintaining system damping in case of actuator faults.展开更多
基金Project(51007042) supported by the National Natural Science Foundation of China
文摘Wide area damping controller(WADC) is usually utilized to damp interarea low frequency oscillation in power system. However, conventional WADC design method neglects the influence of signal transmission delay and damping performance of WADC designed by the conventional method may deteriorate or even has no effect when signal transmission delay is beyond delay margin, an index that denotes delay endurance degree of power system. Therefore, a new design method for WADC under the condition of expected damping factor and required signal transmission delay is presented in this work. An improved delay margin with less conservatism is derived by adopting a new Lyapunov-Krasovskii function and more compact bounding technique on the derivative of Lyapunov-Krasovskii functional. The improved delay margin, which constructs the correlation of damping factor and signal transmission delay, can be used to design WADC. WADC designed by the proposed method can ensure that power system satisfies expected damping factor when WADC input signal is delayed within delay margin. Satisfactory test results demonstrate the effectiveness of the proposed method.
文摘Integration of renewable energy sources(RES)with a conventional power system has a detrimental effect on interarea oscillation.Most popular RESs are solar photovoltaic(PV)and wind energy conversion systems(WECS).Both solar PV power generation and WECS are integrated with power systems using a power electronic converter.Increasing the amount of RES generation lead towards reduction of system damping,which leads towards inter-area oscillation.Also,the intermittent behavior of a RES reduces the effectiveness of damping controllers.A dynamic controller based wide area damping controller(WADC)is proposed in this paper to increase small signal stability of a RES integrated power system.The WADC is designed for contemplating delay in a communication channel,communication failure and saturation.An anti-windup compensator is developed to overcome the effect of actuator saturation.However,the gain of the anti-windup compensator is calculated using LyapunovKrasovskii functional(LKF)in terms of linear matrix inequality(LMI).The actuator considered in this paper is a unified power flow controller(UPFC).Efficacy of PV and wind power integration on power system is also observed.The efficacy of the developed dynamic controller is verified using IEEE 39 bus and 68 bus power system.
文摘In large inter connected power systems, inter-area oscillations are turned to be a severe problem. Hence inter-area oscillations cause severe problems like damage to generators, reduce the power transfer capability of transmission lines, increase wear and tear on network components, increase line losses etc. This paper is to maintain the stability of system by damping inter-area oscillations. Implementation of new equipment consists of high power electronics based technologies such as FACTs and proper controller design has become an essential to provide better damping performance than Power System Stabilizer (PSS). With development of Wide Area Measurement System (WAMS), remote signals have become as feedback signals to design Wide Area Damping Controller (WADC) for FACTs devices. In this work, POD is applied to both SVC and SSSC. Simulation studies are carried out in Power System Analysis Toolbox (PSAT) environment to evaluate the effectiveness of the FACTs controller in a large area power system. Results show that extensive analysis of FACTs controller for improving stability of system.
文摘This paper presents design of an self contained actuators unit in wide area damping control of power system in stabilizing system response for both nominal system condition and during actuator faults.First it is presented that use of multiple actuators in wide area control aid in improving damping in power system.A wide area damping controller feeding multiple actuators to satisfy multiple objectives in wide area damping control of power system is designed.Minimization of infinity norm of closed loop transfer function of power system with wide area controller in feedback path&closed loop poles placement techniques are used in controller synthesis.Second a reconfigurable control on the lines of fault hiding principle is added to the controller design to maintain system damping to pre-fault level in case of actuator faults.A reconfiguration component(RC)is activated on occurrence of actuator fault thereby reconfiguring system dynamics and redistributing wide area control signal among remaining active actuators.RC together with remaining active actuators and under same wide area damping controller maintains system damping to pre-fault level thereby preserving system dynamic response.In the reconfigurable control design presented here no new actuators outside the unit of actuators designed for wide area damping control is required.This makes for an self contained actuators unit in wide area damping control of power system both for nominal system condition and for system affected by actuator faults.A two area power system model is considered here for demonstrating effectiveness of designed robust damping controller with multiple outputs feeding multiple actuators in wide area control and illustrating the idea of self contained actuators unit for maintaining system damping in case of actuator faults.