Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linka...Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linkages,the importance of marine economic net-work research is beginning to emerge.The construction of the marine economic network in China’s coastal areas is necessary to change the flow of land and sea resources and optimize regional marine economic development.Employing data from headquarters and branches of sea-related A-share listed enterprises to construct the marine economic network in China,we use social network analysis(SNA)to discuss the characteristics of its evolution as of 2010,2015,and 2020 and its governance.The following results were obtained.1)In terms of topological characteristics,the scale of the marine economic network in China’s coastal areas has accelerated and expan-ded,and the connections have become increasingly close;thus,this development has complex network characteristics.2)In terms of spatial structure,the intensity of the connection fluctuates and does not form stable development support;the group structure gradually becomes clear,but the overall pattern is fragmented;there are spatial differences in marine economic agglomeration radiation;the radi-ation effect of the eastern marine economic circle is obvious;and the polarization effect of northern and southern marine economic circles is significant.On this basis,we construct a framework for the governance of a marine economic network with the market,the government,and industry as the three governing bodies.By clarifying the driving factors and building objectives of marine economic network construction,this study aims to foster the high-quality development of China’s marine economy.展开更多
The Internet of Things(IoT)has enabled various intelligent services,and IoT service range has been steadily extended through long range wide area communication technologies,which enable very long distance wireless dat...The Internet of Things(IoT)has enabled various intelligent services,and IoT service range has been steadily extended through long range wide area communication technologies,which enable very long distance wireless data transmission.End-nodes are connected to a gateway with a single hop.They consume very low-power,using very low data rate to deliver data.Since long transmission time is consequently needed for each data packet transmission in long range wide area networks,data transmission should be efficiently performed.Therefore,this paper proposes a multicast uplink data transmission mechanism particularly for bad network conditions.Transmission delay will be increased if only retransmissions are used under bad network conditions.However,employing multicast techniques in bad network conditions can significantly increase packet delivery rate.Thus,retransmission can be reduced and hence transmission efficiency increased.Therefore,the proposed method adopts multicast uplink after network condition prediction.To predict network conditions,the proposed method uses a deep neural network algorithm.The proposed method performance was verified by comparison with uplink unicast transmission only,confirming significantly improved performance.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability t...The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats.展开更多
Electric vehicles (EVs) are an emerging type of mobile intelligent power consumption devices in Smart Grid as new green transport tools. In order to provide a powerful automation and intelligence support for wide area...Electric vehicles (EVs) are an emerging type of mobile intelligent power consumption devices in Smart Grid as new green transport tools. In order to provide a powerful automation and intelligence support for wide area electric vehicles energy service network, we analyze the network infrastructure and communications demands of various terminals, devices and monitoring systems distributed in wide area electric vehicle energy service network. According to interactive user services scenarios and energy operations intelligent monitoring, we propose multimode communication integration architecture for wide area electric vehicle energy service network by means of the fusion of the Internet of Things (IoT) technology. Then, we design different networking schemes in access networks and backbone transmission networks meeting multi-scene and multi-operation interaction requirements. The networking schemes will provide efficient technical support to implement intelligent, cross-regional, interactive energy services for electric vehicle users.展开更多
It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical fra...It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.展开更多
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas...The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.展开更多
Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor ...Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.展开更多
The use of Global Navigation Satellite Systems (GNSS) for positioning has revolutionized the way location data is be- ing collected. The NAVigation System with Time And Ranging Global Positioning System (GPS), which i...The use of Global Navigation Satellite Systems (GNSS) for positioning has revolutionized the way location data is be- ing collected. The NAVigation System with Time And Ranging Global Positioning System (GPS), which is a principal component of the global navigation satellite system (GNSS);is a satellite-based radio navigation system that provides positions of points of interest and time information to users. GPS positional accuracy can be improved by using differential corrections obtained through a technique called Differential GPS (DGPS), which is known to provide the most accurate positioning results. Differential correction can be applied in real time at the data collection phase or in the of- fice, at the post-processing phase. DGPS is generally used for positioning purposes through static or kinematics GPS surveys. In static GPS surveys, one receiver is placed at a point whose coordinates are known and the other receiver is placed over a point whose coordinates are desired. In kinematic surveys, one receiver remains at one point (base station) normally with known coordinates, and the other receiver (rover) moves from point to point in the project area. Kinematic surveys in which points positions are computed on-the-fly (OTF) are known as real-time kinematic (RTK). RTK surveys provide real-time locations of points of interest needed in many applications. Positioning with wide-area GNSS networks is basically based on the DGPS and RTK concepts. Observables from a network of a finite number of GPS receivers over an area are processed by a server at a central location (network server) and made available to the users of the network later or in real-time through radio-based, satellite, or wireless communications. This article provides a review of the concept and application of positioning with wide-area GNSS networks.展开更多
The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand...The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand characteristics and economic aspects of rail transit within metropolitan regions and argues that the construction of an integrated urban rail transit network is an effective approach to support their development.Rail transit in metropolitan areas offers both technical and economic advantages,improving the efficiency of time and space resource utilization,fostering economic cooperation,and ultimately contributing to an integrated development model.However,the integration of rail transit networks faces several challenges,including road network planning,technical standards,and operational organization.Using the Wuhan metropolitan area as a case study,this paper analyzes the challenges of rail transit network integration and proposes strategic solutions for development.展开更多
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos...Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.展开更多
Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearit...Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement...The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.展开更多
Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area...Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts.展开更多
The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effec...The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effectively with the help of modern technology especially in less-developed areas.This thesis focuses on network-based experimental study.The research shows that the students under NBLL environment have cultivated the capabilities in information collection,computer operation,and information evaluation,as well as the abilities in problem solving,reasoning with criticism,and cooperating with others.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
Based on space syntax theory, the spatial accessibility of the road network in Wuhan Metropolitan Area has been quantitatively analyzed by building a series of accessibility variables. Topologic connectivity in the ac...Based on space syntax theory, the spatial accessibility of the road network in Wuhan Metropolitan Area has been quantitatively analyzed by building a series of accessibility variables. Topologic connectivity in the accessible rings appears to be broken;traffic axis network is in spatial structure of hub-and-spoke and fishbone-like. Meanwhile, the differences in classified road network have led to inefficiency of its network servo and its ever-worsening capability to respond to traffic jams. Besides, two band-like integrated cores of which one is east to west along the Yangtze River and the other is north to south along Beijing to Guangzhou Railway, have become the first level traffic axis in the whole network, which is responsible for the connectivity of the entire metropolitan area network. This consequently has strengthened the dominant position of Wuhan which is located on the bands’ crossing. In short, the spatial accessibility of that classified space morphology, the urban system, the transport infrastructure as well as the social and economic development of Wuhan Metropolitan Area are highly interrelated to each other, especially to the high level highway network featured by freeways, the development level of which is well in line with that of road network accessibility.展开更多
In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated qui...In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated quickly and defined exactly. In our study, global information will be introduced into the backup protection system. By analyzing and computing real-time PMU measurements, basing on cluster analysis theory, we are using mainly hierarchical cluster analysis to search after the statistical laws of electrical quantities' marked changes. Then we carry out fast and exact detection of fault components and fault sections, and finally accomplish fault isolation. The facts show that the fault detection of fault component (fault section) can be performed successfully by hierarchical cluster analysis and calculation. The results of hierarchical cluster analysis are accurate and reliable, and the dendrograms of hierarchical cluster analysis are in intuition.展开更多
This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. B...This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.展开更多
基金Under the auspices of the Key Research Base of Humanities and Social Sciences of the Ministry of Education of China(No.22JJD790029)。
文摘Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linkages,the importance of marine economic net-work research is beginning to emerge.The construction of the marine economic network in China’s coastal areas is necessary to change the flow of land and sea resources and optimize regional marine economic development.Employing data from headquarters and branches of sea-related A-share listed enterprises to construct the marine economic network in China,we use social network analysis(SNA)to discuss the characteristics of its evolution as of 2010,2015,and 2020 and its governance.The following results were obtained.1)In terms of topological characteristics,the scale of the marine economic network in China’s coastal areas has accelerated and expan-ded,and the connections have become increasingly close;thus,this development has complex network characteristics.2)In terms of spatial structure,the intensity of the connection fluctuates and does not form stable development support;the group structure gradually becomes clear,but the overall pattern is fragmented;there are spatial differences in marine economic agglomeration radiation;the radi-ation effect of the eastern marine economic circle is obvious;and the polarization effect of northern and southern marine economic circles is significant.On this basis,we construct a framework for the governance of a marine economic network with the market,the government,and industry as the three governing bodies.By clarifying the driving factors and building objectives of marine economic network construction,this study aims to foster the high-quality development of China’s marine economy.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2019-2015-0-00403)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)this work was supported by the Soonchunhyang University Research Fund.
文摘The Internet of Things(IoT)has enabled various intelligent services,and IoT service range has been steadily extended through long range wide area communication technologies,which enable very long distance wireless data transmission.End-nodes are connected to a gateway with a single hop.They consume very low-power,using very low data rate to deliver data.Since long transmission time is consequently needed for each data packet transmission in long range wide area networks,data transmission should be efficiently performed.Therefore,this paper proposes a multicast uplink data transmission mechanism particularly for bad network conditions.Transmission delay will be increased if only retransmissions are used under bad network conditions.However,employing multicast techniques in bad network conditions can significantly increase packet delivery rate.Thus,retransmission can be reduced and hence transmission efficiency increased.Therefore,the proposed method adopts multicast uplink after network condition prediction.To predict network conditions,the proposed method uses a deep neural network algorithm.The proposed method performance was verified by comparison with uplink unicast transmission only,confirming significantly improved performance.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the researchers supporting project(PNURSP2024R435)and this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats.
文摘Electric vehicles (EVs) are an emerging type of mobile intelligent power consumption devices in Smart Grid as new green transport tools. In order to provide a powerful automation and intelligence support for wide area electric vehicles energy service network, we analyze the network infrastructure and communications demands of various terminals, devices and monitoring systems distributed in wide area electric vehicle energy service network. According to interactive user services scenarios and energy operations intelligent monitoring, we propose multimode communication integration architecture for wide area electric vehicle energy service network by means of the fusion of the Internet of Things (IoT) technology. Then, we design different networking schemes in access networks and backbone transmission networks meeting multi-scene and multi-operation interaction requirements. The networking schemes will provide efficient technical support to implement intelligent, cross-regional, interactive energy services for electric vehicle users.
基金Under the auspices of the Taishan Scholars Project Special FundsNational Natural Science Fundation of China(No.42077434,42001199)Youth Innovation Technology Project of Higher School in Shandong Province(No.2019RWG016)。
文摘It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia。
文摘The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.
文摘Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio.
文摘The use of Global Navigation Satellite Systems (GNSS) for positioning has revolutionized the way location data is be- ing collected. The NAVigation System with Time And Ranging Global Positioning System (GPS), which is a principal component of the global navigation satellite system (GNSS);is a satellite-based radio navigation system that provides positions of points of interest and time information to users. GPS positional accuracy can be improved by using differential corrections obtained through a technique called Differential GPS (DGPS), which is known to provide the most accurate positioning results. Differential correction can be applied in real time at the data collection phase or in the of- fice, at the post-processing phase. DGPS is generally used for positioning purposes through static or kinematics GPS surveys. In static GPS surveys, one receiver is placed at a point whose coordinates are known and the other receiver is placed over a point whose coordinates are desired. In kinematic surveys, one receiver remains at one point (base station) normally with known coordinates, and the other receiver (rover) moves from point to point in the project area. Kinematic surveys in which points positions are computed on-the-fly (OTF) are known as real-time kinematic (RTK). RTK surveys provide real-time locations of points of interest needed in many applications. Positioning with wide-area GNSS networks is basically based on the DGPS and RTK concepts. Observables from a network of a finite number of GPS receivers over an area are processed by a server at a central location (network server) and made available to the users of the network later or in real-time through radio-based, satellite, or wireless communications. This article provides a review of the concept and application of positioning with wide-area GNSS networks.
基金The Research Fund of Jianghan University(Project No.2021yb096)Hubei Social Science Foundation Project“Research on the Relationship between Rail Transit and Intensive and Sustainable Development of Large Cities”(Project No.2020052)。
文摘The metropolitan area is one of the key focal points in the construction and development of China’s new urbanization.Urban integration is an emerging trend in metropolitan areas.This paper explores the traffic demand characteristics and economic aspects of rail transit within metropolitan regions and argues that the construction of an integrated urban rail transit network is an effective approach to support their development.Rail transit in metropolitan areas offers both technical and economic advantages,improving the efficiency of time and space resource utilization,fostering economic cooperation,and ultimately contributing to an integrated development model.However,the integration of rail transit networks faces several challenges,including road network planning,technical standards,and operational organization.Using the Wuhan metropolitan area as a case study,this paper analyzes the challenges of rail transit network integration and proposes strategic solutions for development.
基金supported by the National Natural Science Foundation of China(No.61074165 and No.61273064)Jilin Provincial Science&Technology Department Key Scientific and Technological Project(No.20140204034GX)Jilin Province Development and Reform Commission Project(No.2015Y043)
文摘Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications.
基金supported by the National Scientific and Technological Task in China(Nos.2015BAD09B0101,2016YFD0600302)National Natural Science Foundation of China(No.31570619)the Special Science and Technology Innovation in Jiangxi Province(No.201702)
文摘Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金supported by the National Natural Science Foundation of China (Grant No. 10832011)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08)
文摘The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402003)the National Natural Science Foundation of China(No.41671436)the Innovation Project of LREIS(No.O88RAA01YA)
文摘Sanduao is an important sea-breeding bay in Fujian,South China and holds a high economic status in aquaculture.Quickly and accurately obtaining information including the distribution area,quantity,and aquaculture area is important for breeding area planning,production value estimation,ecological survey,and storm surge prevention.However,as the aquaculture area expands,the seawater background becomes increasingly complex and spectral characteristics differ dramatically,making it difficult to determine the aquaculture area.In this study,we used a high-resolution remote-sensing satellite GF-2 image to introduce a deep-learning Richer Convolutional Features(RCF)network model to extract the aquaculture area.Then we used the density of aquaculture as an assessment index to assess the vulnerability of aquaculture areas in Sanduao.The results demonstrate that this method does not require land and water separation of the area in advance,and good extraction can be achieved in the areas with more sediment and waves,with an extraction accuracy>93%,which is suitable for large-scale aquaculture area extraction.Vulnerability assessment results indicate that the density of aquaculture in the eastern part of Sanduao is considerably high,reaching a higher vulnerability level than other parts.
文摘The advent of the Age of Information brings about bright prospects to Network-based Language Learning(NBLL).The thesis adopts the Engagement Theory as guided principles.The purpose is to use the novel NBLL model effectively with the help of modern technology especially in less-developed areas.This thesis focuses on network-based experimental study.The research shows that the students under NBLL environment have cultivated the capabilities in information collection,computer operation,and information evaluation,as well as the abilities in problem solving,reasoning with criticism,and cooperating with others.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘Based on space syntax theory, the spatial accessibility of the road network in Wuhan Metropolitan Area has been quantitatively analyzed by building a series of accessibility variables. Topologic connectivity in the accessible rings appears to be broken;traffic axis network is in spatial structure of hub-and-spoke and fishbone-like. Meanwhile, the differences in classified road network have led to inefficiency of its network servo and its ever-worsening capability to respond to traffic jams. Besides, two band-like integrated cores of which one is east to west along the Yangtze River and the other is north to south along Beijing to Guangzhou Railway, have become the first level traffic axis in the whole network, which is responsible for the connectivity of the entire metropolitan area network. This consequently has strengthened the dominant position of Wuhan which is located on the bands’ crossing. In short, the spatial accessibility of that classified space morphology, the urban system, the transport infrastructure as well as the social and economic development of Wuhan Metropolitan Area are highly interrelated to each other, especially to the high level highway network featured by freeways, the development level of which is well in line with that of road network accessibility.
文摘In wide area backup protection of electric power systems, the prerequisite of protection device's accurate, fast and reliable performance is its corresponding fault type and fault location can be discriminated quickly and defined exactly. In our study, global information will be introduced into the backup protection system. By analyzing and computing real-time PMU measurements, basing on cluster analysis theory, we are using mainly hierarchical cluster analysis to search after the statistical laws of electrical quantities' marked changes. Then we carry out fast and exact detection of fault components and fault sections, and finally accomplish fault isolation. The facts show that the fault detection of fault component (fault section) can be performed successfully by hierarchical cluster analysis and calculation. The results of hierarchical cluster analysis are accurate and reliable, and the dendrograms of hierarchical cluster analysis are in intuition.
基金Supported by the National Natural Science Foundation of China Youth Science Fund Project(Nos.62101405,61372185)
文摘This paper proposed a robust method based on the definition of Mahalanobis distance to track ground moving target. The feature and the geometry of airborne ground moving target tracking systems are studied at first. Based on this feature, the assignment relation of time-nearby target is calculated via Mahalanobis distance, and then the corresponding transformation formula is deduced. The simulation results show the correctness and effectiveness of the proposed method.