In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band s...In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.展开更多
In array signal processing,the existing methods for DOA estimation of wide-band signals are only related to the azimuth estimation when the number or sensors is known.It is shown that a circular array possesses severa...In array signal processing,the existing methods for DOA estimation of wide-band signals are only related to the azimuth estimation when the number or sensors is known.It is shown that a circular array possesses several nice properties.2-D spatial-spectrum estimation for wide-band sources is performed by using a circular array of sensors with sample delay lines.Further,the Choi' s approach is extended,which was suggested to estimate DOA of narrow-band signals when the number of sensor was unknown,to wide-band signal processing.The extended approach is shown to be quite adequate for wide-band signal subspace spatial-spectrum estimation (BASS-LE),and a large aperture (r>λvin/2) circular array is found to possess superior resolution capability and robustness.展开更多
文摘In array signal processing, 2-D spatial-spectrum estimation is required to determine DOA of multiple signals. The circular array of sensors is found to possess several nice properties for DOA estimation of wide-band sources. C. U. Padmini, et al.(1994) had suggested that the frequency-direction ambiguity in azimuth estimation of wide-baud signals received by a uniform linear array (ULA) can be avoided by using a circular array, even without the use of any delay elements. In 2-D spatial-spectrum estimation for wide-band signals, the authors find that it is impossible to avoid the ambiguity in source frequency-elevation angle pairs using a circular array. In this paper, interpolated circular arrays are used to perform 2-D spatial-spectrum estimation for wide-band sources. In the estimation, a large aperture circular array (Υ】λmin/2) is found to possess superior resolution capability and robustness.
文摘In array signal processing,the existing methods for DOA estimation of wide-band signals are only related to the azimuth estimation when the number or sensors is known.It is shown that a circular array possesses several nice properties.2-D spatial-spectrum estimation for wide-band sources is performed by using a circular array of sensors with sample delay lines.Further,the Choi' s approach is extended,which was suggested to estimate DOA of narrow-band signals when the number of sensor was unknown,to wide-band signal processing.The extended approach is shown to be quite adequate for wide-band signal subspace spatial-spectrum estimation (BASS-LE),and a large aperture (r>λvin/2) circular array is found to possess superior resolution capability and robustness.