A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt...A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt)=V(G)then Ct(u,v)is called a spanning t-container,denoted by C_(t)^(sc)(u,v).The length of C_(t)^(sc)(u,v)={P_(1),P_(2),···,Pt}is l(C_(t)^(sc)(u,v))=max{l(P_(i))|1≤i≤t}.A graph G is spanning t-connected if there exists a spanning t-container between any two distinct vertices u and v in G.Assume that u and v are two distinct vertices in a spanning t-connected graph G.Let D_(t)^(sc)(u,v)be the collection of all C_(t)^(sc)(u,v)’s.Define the spanning t-wide distance between u and v in G,d_(t)^(sc)(u,v)=min{l(C_(t)^(sc)(u,v))|C_(t)^(sc)(u,v)∈D_(t)^(sc)(u,v)},and the spanning t-wide diameter of G,D_(t)^(sc)(G)=max{d_(t)^(sc)(u,v)|u,v∈V(G)}.In particular,the spanning wide diameter of G is D_(κ)^(sc)(G),whereκis the connectivity of G.In the paper we provide the upper and lower bounds of the spanning wide diameter of a graph,and show that the bounds are best possible.We also determine the exact values of wide diameters of some well known graphs including Harary graphs and generalized Petersen graphs et al..展开更多
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,t...Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.展开更多
AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in ...AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.展开更多
Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues...Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.展开更多
The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stabil-ity.However,in karst regions,intense habitat heterogene-i...The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stabil-ity.However,in karst regions,intense habitat heterogene-ity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and ori-entation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the aver-age and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orienta-tion had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results sug-gest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.展开更多
BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference ...BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
BACKGROUND The maximum outer diameter(MOD)of the appendix is an essential parameter for diagnosing acute appendicitis,but there is space for improvement in ultrasound(US)diagnostic performance.AIM To investigate wheth...BACKGROUND The maximum outer diameter(MOD)of the appendix is an essential parameter for diagnosing acute appendicitis,but there is space for improvement in ultrasound(US)diagnostic performance.AIM To investigate whether combining the ratio of the cross diameters(RATIO)of the appendix with MOD of the appendix can enhance the diagnostic performance of acute appendicitis.METHODS A retrospective study was conducted,and medical records of 233 patients with acute appendicitis and 112 patients with a normal appendix were reviewed.The MOD and RATIO of the appendix were calculated and tested for their diagnostic performance of acute appendicitis,both individually and in combination.RESULTS The RATIO for a normal appendix was 1.32±0.16,while for acute appendicitis it was 1.09±0.07.The cut-off value for RATIO was determined to be≤1.18.The area under the receiver operating characteristic curve(AUC)for diagnosing acute appendicitis using RATIO≤1.18 and MOD>6 mm was 0.870 and 0.652,respectively.There was a significant difference in AUC between RATIO≤1.18 and MOD>6 mm(P<0.0001).When comparing the combination of RATIO≤1.18 and MOD>6 mm with MOD>6 mm alone,the combination showed increased specificity,positive predictive value(PPV),and AUC.However,the sensitivity and negative predictive value decreased.CONCLUSION Combining RATIO of the appendix≤1.18 and MOD>6 mm can significantly improve the specificity,PPV,and AUC in the US diagnosis of acute appendicitis.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of o...The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.展开更多
Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology...Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
Objective:Vesicoureteral reflux(VUR)index is a simple,validated tool that reliably predicts significant improvement and spontaneous resolution of primary reflux in children.The aim of this study was to evaluate and co...Objective:Vesicoureteral reflux(VUR)index is a simple,validated tool that reliably predicts significant improvement and spontaneous resolution of primary reflux in children.The aim of this study was to evaluate and compare the ureter diameter ratio(UDR)and VUR index(VURx)of patients treated with endoscopic injection(EI)and ureteroneocystostomy(UNC)methods in the pediatric age group due to primary VUR.Methods:Patients under the age of 18 years old who underwent EI and UNC with the diagnosis of primary VUR between January 2011 and September 2021 were determined as the participants.The UDR was assessed using voiding cystourethrography,and the VURx score was determined prior to treatment based on hospital records included in the study.Results:A total of 255 patients,60(23.5%)boys and 195(76.5%)girls,with a mean age of 76.5(range 13.0e204.0)months,were included in the study.EI was applied to 130(51.0%)patients and UNC was applied to 125(49.0%)patients due to primary VUR.The optimum cut-off for the distal UDR was obtained as 0.17 with sensitivity and specificity of 73.0%and 63.0%,respectively.The positive and negative predictive values were 66.0%and 70.0%,respectively.Conclusion:When the UDR and VURx score are evaluated together for the surgical treatment of primary VUR in the pediatric age group,it is thought that it may be useful in predicting the clinical course of the disease and evaluating surgical treatment options.展开更多
The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregul...The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies.展开更多
The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability t...The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
BACKGROUND Liver cirrhosis is the end stage of progressive liver fibrosis as a consequence of chronic liver inflammation,wherein the standard hepatic architecture is replaced by regenerative hepatic nodules,which even...BACKGROUND Liver cirrhosis is the end stage of progressive liver fibrosis as a consequence of chronic liver inflammation,wherein the standard hepatic architecture is replaced by regenerative hepatic nodules,which eventually lead to liver failure.Cirrhosis without any symptoms is referred to as compensated cirrhosis.Complications such as ascites,variceal bleeding,and hepatic encephalopathy indicate the onset of decompensated cirrhosis.Gastroesophageal varices are the hallmark of clini-cally significant portal hypertension.AIM To determine the accuracy of the platelet count-to-spleen diameter(PC/SD)ratio to evaluate esophageal varices(EV)in patients with cirrhosis.METHODS This retrospective observational study was conducted at Tikur Anbessa Specia-lized Hospital and Adera Medical Center from January 1,2019,to December 30,2023.Data were collected via chart review and direct patient interviews using structured questionnaires.The data were exported to the SPSS software version 26 for analysis and clearance.A receiver operating characteristic curve was plotted for splenic diameter,platelet count,and PC/SD ratio to obtain sensitivity,speci-ficity,positive predictive value,negative predictive value,positive likelihood ratio,and negative likelihood ratio.RESULTS Of the 140 participants,67%were men.Hepatitis B(38%)was the most common cause of cirrhosis,followed by cryptogenic cirrhosis(28%)and hepatitis C(16%).Approximately 83.6%of the participants had endoscopic evidence of EV,whereas 51.1%had gastric varices.Decompensated cirrhosis and PC were associated with the presence of EV with adjusted odds ratios of 12.63(95%CI:3.16-67.58,P=0.001)and 0.14(95%CI:0.037-0.52,P=0.004),respectively.A PC/SD ratio<1119 had a sensitivity of 86.32%and specificity of 70%with area under the curve of 0.835(95%CI:0.736-0.934,P<0.001).CONCLUSION A PC/SD ratio<1119 predicts EV in patients with cirrhosis.It is a valuable,noninvasive tool for EV risk assess-ment in resource-limited settings.展开更多
基金supported by the National Natural Science Foundation of the People's Republic of China“On disjoint path covers of graphs and related problems”(12261085)Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“On spanning wide diameter and spanning cycle ability of interconnection networks”(2021D01C116)。
文摘A t-container Ct(u,v)is a set of t internally disjoint paths between two distinct vertices u and v in a graph G,i.e.,Ct(u,v)={P_(1),P_(2),···,Pt}.Moreover,if V(P_(1))∪V(P_(2))∪···∪V(Pt)=V(G)then Ct(u,v)is called a spanning t-container,denoted by C_(t)^(sc)(u,v).The length of C_(t)^(sc)(u,v)={P_(1),P_(2),···,Pt}is l(C_(t)^(sc)(u,v))=max{l(P_(i))|1≤i≤t}.A graph G is spanning t-connected if there exists a spanning t-container between any two distinct vertices u and v in G.Assume that u and v are two distinct vertices in a spanning t-connected graph G.Let D_(t)^(sc)(u,v)be the collection of all C_(t)^(sc)(u,v)’s.Define the spanning t-wide distance between u and v in G,d_(t)^(sc)(u,v)=min{l(C_(t)^(sc)(u,v))|C_(t)^(sc)(u,v)∈D_(t)^(sc)(u,v)},and the spanning t-wide diameter of G,D_(t)^(sc)(G)=max{d_(t)^(sc)(u,v)|u,v∈V(G)}.In particular,the spanning wide diameter of G is D_(κ)^(sc)(G),whereκis the connectivity of G.In the paper we provide the upper and lower bounds of the spanning wide diameter of a graph,and show that the bounds are best possible.We also determine the exact values of wide diameters of some well known graphs including Harary graphs and generalized Petersen graphs et al..
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金supported by the Youth Fund of Fundamental Research Fund for the Central Universities of Jinan University,No.11622303(to YZ).
文摘Microvasculature of the retina is considered an alternative marker of cerebral vascular risk in healthy populations.However,the ability of retinal vasculature changes,specifically focusing on retinal vessel diameter,to predict the recurrence of cerebrovascular events in patients with ischemic stroke has not been determined comprehensively.While previous studies have shown a link between retinal vessel diameter and recurrent cerebrovascular events,they have not incorporated this information into a predictive model.Therefore,this study aimed to investigate the relationship between retinal vessel diameter and subsequent cerebrovascular events in patients with acute ischemic stroke.Additionally,we sought to establish a predictive model by combining retinal veessel diameter with traditional risk factors.We performed a prospective observational study of 141 patients with acute ischemic stroke who were admitted to the First Affiliated Hospital of Jinan University.All of these patients underwent digital retinal imaging within 72 hours of admission and were followed up for 3 years.We found that,after adjusting for related risk factors,patients with acute ischemic stroke with mean arteriolar diameter within 0.5-1.0 disc diameters of the disc margin(MAD_(0.5-1.0DD))of≥74.14μm and mean venular diameter within 0.5-1.0 disc diameters of the disc margin(MVD_(0.5-1.0DD))of≥83.91μm tended to experience recurrent cerebrovascular events.We established three multivariate Cox proportional hazard regression models:model 1 included traditional risk factors,model 2 added MAD_(0.5-1.0DD)to model 1,and model 3 added MVD0.5-1.0DD to model 1.Model 3 had the greatest potential to predict subsequent cerebrovascular events,followed by model 2,and finally model 1.These findings indicate that combining retinal venular or arteriolar diameter with traditional risk factors could improve the prediction of recurrent cerebrovascular events in patients with acute ischemic stroke,and that retinal imaging could be a useful and non-invasive method for identifying high-risk patients who require closer monitoring and more aggressive management.
基金Supported by Education Department Foundation of Sichuan Province(No.15ZA0262).
文摘AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.
基金Special Fund for Carbon Peak and Carbon Neutralization Scientific and Technological Innovation Project of Jiangsu Province,Grant/Award Number:BE2022042National Natural Science Foundation of China,Grant/Award Numbers:22201275,51873086,51673096,51873086,51673096+2 种基金the Project on the Enterprises-Universities-Research Cooperation of Kucap Smart Technology(Nanjing)Co.,Ltd.,Grant/Award Number:202240607Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23-1407Anhui Provincial Natural Science Foundation,Grant/Award Number:2208085QB32。
文摘Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.
基金supported by the National Natural Science Foundation of China(32060340 and 31400542)the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).
文摘The reverse J-shaped diameter distribution is considered an inherent attribute of natural forests,cru-cial for forest resource utilization and community stabil-ity.However,in karst regions,intense habitat heterogene-ity might alter species composition,spatial distribution,growth,biomass allocation,and mortality processes,yet its impact on diameter structure remains unclear.A fixed plot of 200 m×110 m was established in the Nanpan River Basin,Southwest China,within an old-growth oak forest(>300 years old),and the influence of site substrates(i.e.,rock and soil),topographic factors,sample area,and ori-entation on diameter distribution was analyzed.Trees on both rock and soil exhibited a reverse-J shape,quantifiable Project funding:This work was supported by the National Natural Science Foundation of China(32060340 and 31400542),the Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi(22-035-130-01).through the Weibull function.The substrates had a similar density,approximately 2100 plants/ha.However,the aver-age and range of diameter of trees on rock were smaller than those on soil,suggesting that rock constrains tree growth.The diameter distribution of trees across microtopography also displayed a reverse-J shape.Yet,higher elevations and sunny slopes showed a greater curvature of diameter classes compared to lower elevations and shady slopes,indicating habitat preferences in karst trees.Sample area and orienta-tion had minimal effects on diameter class curve that reached stability when the plot size was 6000 m2.These results sug-gest that the reverse J-shaped diameter distribution prevails at small scales in karst old-growth forests,encompassing multiple curvatures and spanning forest ecosystems.
文摘BACKGROUND:As advocated in advanced trauma life support and prehospital trauma life support protocols,cervical immobilization is applied until cervical spine injury is excluded.This study aimed to show the difference in optic nerve sheath diameter(ONSD)between patients with and without a cervical collar using computed tomography(CT).METHODS:This was a single-center,retrospective study examining trauma patients who presented to the emergency department between January 1,2021,and December 31,2021.The ONSD on brain CT of the trauma patients was measured and analyzed to determine whether there was a difference between the ONSD with and without the cervical collar.RESULTS:The study population consisted of 169 patients.On CT imaging of patients with(n=66)and without(n=103)cervical collars,the mean ONSD in the axial plane were 5.43±0.50 mm and 5.04±0.46 mm respectively for the right eye and 5.50±0.52 mm and 5.11±0.46 mm respectively for the left eye.The results revealed an association between the presence of a cervical collar and the mean ONSD,which was statistically significant(P<0.001)for both the right and left eyes.CONCLUSION:A cervical collar may be associated with increased ONSD.The effect of this increase in the ONSD on clinical outcomes needs to be investigated,and the actual need for cervical collar in the emergency department should be evaluated on a case-by-case basis.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.
文摘BACKGROUND The maximum outer diameter(MOD)of the appendix is an essential parameter for diagnosing acute appendicitis,but there is space for improvement in ultrasound(US)diagnostic performance.AIM To investigate whether combining the ratio of the cross diameters(RATIO)of the appendix with MOD of the appendix can enhance the diagnostic performance of acute appendicitis.METHODS A retrospective study was conducted,and medical records of 233 patients with acute appendicitis and 112 patients with a normal appendix were reviewed.The MOD and RATIO of the appendix were calculated and tested for their diagnostic performance of acute appendicitis,both individually and in combination.RESULTS The RATIO for a normal appendix was 1.32±0.16,while for acute appendicitis it was 1.09±0.07.The cut-off value for RATIO was determined to be≤1.18.The area under the receiver operating characteristic curve(AUC)for diagnosing acute appendicitis using RATIO≤1.18 and MOD>6 mm was 0.870 and 0.652,respectively.There was a significant difference in AUC between RATIO≤1.18 and MOD>6 mm(P<0.0001).When comparing the combination of RATIO≤1.18 and MOD>6 mm with MOD>6 mm alone,the combination showed increased specificity,positive predictive value(PPV),and AUC.However,the sensitivity and negative predictive value decreased.CONCLUSION Combining RATIO of the appendix≤1.18 and MOD>6 mm can significantly improve the specificity,PPV,and AUC in the US diagnosis of acute appendicitis.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金supported by the Shenyang Science and Technology Program(grant number 22-301-1-10).
文摘The design of the loading path is one of the important research contents of the tube hydroforming process.Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization.In this paper,the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object.Fuzzy control was used to optimize the loading path,and the fuzzy rule base was established based on FEM.The minimum wall thickness and wall thickness reduction rate were determined as input membership functions,and the axial feeds variable value of the next step was used as output membership functions.The results show that the optimized loading path greatly improves the uniformity of wall thickness and the forming effect compared with the linear loading path.The round corner lamination rate of the tube is 91.2%under the fuzzy control optimized loading path,which was increased by 47.1%and 22.6%compared with linear loading Path 1 and Path 2,respectively.Based on the optimized loading path in the experiment,the minimum wall thickness of the variable diameter tube was 1.32 mm and the maximum thinning rate was 12.4%.The experimental results were consistent with the simulation results,which verified the accuracy of fuzzy control.The research results provide a reference for improving the forming quality of thin-walled tubes and plates.
基金the National Natural Science Foundation of China(Nos.52125306 and 21875286)。
文摘Herein,two asymmetric hexacyclic fused small molecule acceptors(SMAs),namely BP4F-HU and BP4F-UU,were synthesized.The elongated outside chains in the BP4F-UU molecule played a crucial role in optimizing the morphology of blend film,thereby improving charge mobility and reducing energy loss within the corresponding film.Notably,the PM6:BP4F-UU device exhibited a higher open-circuit voltage(V_(oc))of 0.878 V compared to the PM6:BP4F-HU device with a V_(oc)of 0.863 V.Further,a new wide bandgap SMA named BTP-TA was designed and synthesized as the third component to the PM6:BP4F-UU host binary devices,which showed an ideal complementary absorption spectrum in PM6:BP4F-UU system.In addition,BTP-TA can achieve efficient intermolecular energy transfer to BP4F-UU by fluorescence resonance energy transfer(FRET)pathway,due to the good overlap between the photoluminescence(PL)spectrum of BTP-TA and the absorption region of BP4F-UU.Consequently,ternary devices with 15wt%BTP-TA exhibits broader photon utilization,optimal blend morphology,and reduced charge recombination compared to the corresponding binary devices.Consequently,PM6:BP4F-UU:BTP-TA ternary device achieved an optimal power conversion efficiency(PCE)of 17.83%with simultaneously increased V_(oc)of 0.905 V,short-circuit current density(J_(sc))of 26.14 mA/cm^(2),and fill factor(FF)of 75.38%.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.
文摘Objective:Vesicoureteral reflux(VUR)index is a simple,validated tool that reliably predicts significant improvement and spontaneous resolution of primary reflux in children.The aim of this study was to evaluate and compare the ureter diameter ratio(UDR)and VUR index(VURx)of patients treated with endoscopic injection(EI)and ureteroneocystostomy(UNC)methods in the pediatric age group due to primary VUR.Methods:Patients under the age of 18 years old who underwent EI and UNC with the diagnosis of primary VUR between January 2011 and September 2021 were determined as the participants.The UDR was assessed using voiding cystourethrography,and the VURx score was determined prior to treatment based on hospital records included in the study.Results:A total of 255 patients,60(23.5%)boys and 195(76.5%)girls,with a mean age of 76.5(range 13.0e204.0)months,were included in the study.EI was applied to 130(51.0%)patients and UNC was applied to 125(49.0%)patients due to primary VUR.The optimum cut-off for the distal UDR was obtained as 0.17 with sensitivity and specificity of 73.0%and 63.0%,respectively.The positive and negative predictive values were 66.0%and 70.0%,respectively.Conclusion:When the UDR and VURx score are evaluated together for the surgical treatment of primary VUR in the pediatric age group,it is thought that it may be useful in predicting the clinical course of the disease and evaluating surgical treatment options.
文摘The cross-level and twist irregularities are the most dangerous irregularity types that could cause wheel unloading with the risk of derailments and additional maintenance expenses.However,the mechanism of the irregularities initiation and development is unclear.The motivation of the present study was the previous experimental studies on the application of wide sleepers in the ballasted track.The long-term track geometry measurements with wide sleepers show an enormous reduction of the vertical longitudinal irregularities compared to the conventional track.However,wide sleepers had higher twist and cross-section level irregularities.The present paper aims to explain the phenomenon by discrete element method(DEM)modeling the development process of sleeper inhomogeneous support at cross-level depending on the sleeper form.The DEM simulations show that the maximal settlement intensity is up to 3.5 times lower for a wide sleeper in comparison with the conventional one.Nevertheless,the cross-level differential settlements are almost the same for both sleepers.The particle loading distribution after all loading cycles is concentrated on the smaller area,up to the half sleeper length,with fully unloaded zones under sleeper ends.Ballast flow limitation under the central part of the sleeper could improve the resilience of wide sleepers to the development of cross-level irregularities.The mechanism of initiation of the cross-level irregularity is proposed,which assumes the loss of sleeper support under sleeper ends.The further growth of inhomogeneous settlements along the sleeper is assumed as a result of the interaction of two processes:ballast flow due to dynamic impact during void closing and on the other side high pressure due to the concentration of the pressure under the middle part of the sleeper.The DEM simulation results support the assumption of the mechanism and agree with the experimental studies.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the researchers supporting project(PNURSP2024R435)and this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘The widespread adoption of Internet of Things(IoT)devices has resulted in notable progress in different fields,improving operational effectiveness while also raising concerns about privacy due to their vulnerability to virus attacks.Further,the study suggests using an advanced approach that utilizes machine learning,specifically the Wide Residual Network(WRN),to identify hidden malware in IoT systems.The research intends to improve privacy protection by accurately identifying malicious software that undermines the security of IoT devices,using the MalMemAnalysis dataset.Moreover,thorough experimentation provides evidence for the effectiveness of the WRN-based strategy,resulting in exceptional performance measures such as accuracy,precision,F1-score,and recall.The study of the test data demonstrates highly impressive results,with a multiclass accuracy surpassing 99.97%and a binary class accuracy beyond 99.98%.The results emphasize the strength and dependability of using advanced deep learning methods such as WRN for identifying hidden malware risks in IoT environments.Furthermore,a comparison examination with the current body of literature emphasizes the originality and efficacy of the suggested methodology.This research builds upon previous studies that have investigated several machine learning methods for detecting malware on IoT devices.However,it distinguishes itself by showcasing exceptional performance metrics and validating its findings through thorough experimentation with real-world datasets.Utilizing WRN offers benefits in managing the intricacies of malware detection,emphasizing its capacity to enhance the security of IoT ecosystems.To summarize,this work proposes an effective way to address privacy concerns on IoT devices by utilizing advanced machine learning methods.The research provides useful insights into the changing landscape of IoT cybersecurity by emphasizing methodological rigor and conducting comparative performance analysis.Future research could focus on enhancing the recommended approach by adding more datasets and leveraging real-time monitoring capabilities to strengthen IoT devices’defenses against new cybersecurity threats.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.
文摘BACKGROUND Liver cirrhosis is the end stage of progressive liver fibrosis as a consequence of chronic liver inflammation,wherein the standard hepatic architecture is replaced by regenerative hepatic nodules,which eventually lead to liver failure.Cirrhosis without any symptoms is referred to as compensated cirrhosis.Complications such as ascites,variceal bleeding,and hepatic encephalopathy indicate the onset of decompensated cirrhosis.Gastroesophageal varices are the hallmark of clini-cally significant portal hypertension.AIM To determine the accuracy of the platelet count-to-spleen diameter(PC/SD)ratio to evaluate esophageal varices(EV)in patients with cirrhosis.METHODS This retrospective observational study was conducted at Tikur Anbessa Specia-lized Hospital and Adera Medical Center from January 1,2019,to December 30,2023.Data were collected via chart review and direct patient interviews using structured questionnaires.The data were exported to the SPSS software version 26 for analysis and clearance.A receiver operating characteristic curve was plotted for splenic diameter,platelet count,and PC/SD ratio to obtain sensitivity,speci-ficity,positive predictive value,negative predictive value,positive likelihood ratio,and negative likelihood ratio.RESULTS Of the 140 participants,67%were men.Hepatitis B(38%)was the most common cause of cirrhosis,followed by cryptogenic cirrhosis(28%)and hepatitis C(16%).Approximately 83.6%of the participants had endoscopic evidence of EV,whereas 51.1%had gastric varices.Decompensated cirrhosis and PC were associated with the presence of EV with adjusted odds ratios of 12.63(95%CI:3.16-67.58,P=0.001)and 0.14(95%CI:0.037-0.52,P=0.004),respectively.A PC/SD ratio<1119 had a sensitivity of 86.32%and specificity of 70%with area under the curve of 0.835(95%CI:0.736-0.934,P<0.001).CONCLUSION A PC/SD ratio<1119 predicts EV in patients with cirrhosis.It is a valuable,noninvasive tool for EV risk assess-ment in resource-limited settings.