Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transecte...Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transected at T 9-10 level. The rate of firings of single neurons in the dorsal horn in response to electrical stimulation of skin was recorded with microelectrodes. The early and late discharges were observed when rats inhaled 0.5%, 1.0%, 1.5%, and 2.0% sevoflurane. Results: Sevoflurane suppressed the early and late discharges at the concentration of 0.5%, 1.0%, 1.5%, and 2.0%. Compared with early discharges, the extent of inhibition of late discharges was wider at the concentration of 1%, 1.5%, and 2.0% of sevoflurane. Conclusion: It is indicated that sevoflurane could suppress the transmission of nociceptive and non-nociceptive stimulation at dorsal horn. The suppression on nociceptive imput is stronger than that on non-nociceptive imput when the concentration of sevoflurane is more than 1%.展开更多
Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve li...Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.Methods Adult Sprague-Dawley rats were divided into normal and SNL groups.Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.Results Compared with the WDR neurons in normal rats,the WDR neurons in SNL rats showed an increase in excitability,manifested by an enlargement of the receptive field size,an increase in the proportion of neurons that exhibited spontaneous activities,decreases in the Cresponse threshold and latency,and an increase in the C-response duration.In addition,the numbers of A-and C-fiberevoked discharges were smaller in SNL rats than in normal rats.Conclusion The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL.The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.展开更多
As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time,...As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.展开更多
This paper presents a method to control the gain within pulse and accurately measure the amplitude of an underwater sound pulse in a wide dynamic range. In the method a loop composed of a gain controlled unit and a mi...This paper presents a method to control the gain within pulse and accurately measure the amplitude of an underwater sound pulse in a wide dynamic range. In the method a loop composed of a gain controlled unit and a microcomputer is employed.This method also gives satisfactory results when there exist distortion of signal cnvelop and fluctuation of signal amplitude. The basic mathematical model of instantaneous amplitude-gain control and amplitude measurement and its hardware structure are presented. The calibration method of the system for retransmitting (responding) with required sound level is given as well.展开更多
Purpose HPGe detectors can be used for both dark matter search and neutrinoless double beta decay experiments.However,signal amplitudes of these two experiments are quite different.This paper presents the development ...Purpose HPGe detectors can be used for both dark matter search and neutrinoless double beta decay experiments.However,signal amplitudes of these two experiments are quite different.This paper presents the development of a wide dynamic range CMOS preamplifier for HPGe detectors,which can also be used for low light level photon detection.Methods The structure of a dual-stage dual-gain amplifier was adopted to receive the signals with charges ranging from~0.01 fC to 500 fC.A novel“pre-reset”technique has been proposed to reduce the dead time ratio for large signals.A prototype chip was fabricated and tested.Results A minimum ENC of 43 electrons has been achieved for the high-gain channel at 77 K and the maximum charge of the input signal could be up to 500 fC for the low-gain channel,corresponding to a dynamic range above 90 dB.Conclusions The dual-gain structure of the preamplifier and the“pre-reset”method have been successfully verified,which can be used for HPGe detectors for dark matter and neutrino experiments in the future.展开更多
Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the sp...Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C fibers evoked responses, C responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C responses of WDR neurons were observed. The effect of muscle spindle afferents on C responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.展开更多
Increasing bandwidth requirements have posed significant challenges for traditional access networks.It is difficult for intensity modulation/direct detection to meet the power budget and flexibility requirements of th...Increasing bandwidth requirements have posed significant challenges for traditional access networks.It is difficult for intensity modulation/direct detection to meet the power budget and flexibility requirements of the next-generation passive optical network(PON)at 100G and beyond considering the new requirements.This is driving researchers to develop novel optical access technologies.Low-cost,wide-coverage,and high-flexibility coherent PON is emerging as a strong contender in the competition.In this article,we will review technologies that reduce the complexity of coherent PON(CPON),enabling it to meet the commercial requirements.Also,advanced algorithms and architectures that can enhance system coverage and flexibility are also discussed.展开更多
文摘Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transected at T 9-10 level. The rate of firings of single neurons in the dorsal horn in response to electrical stimulation of skin was recorded with microelectrodes. The early and late discharges were observed when rats inhaled 0.5%, 1.0%, 1.5%, and 2.0% sevoflurane. Results: Sevoflurane suppressed the early and late discharges at the concentration of 0.5%, 1.0%, 1.5%, and 2.0%. Compared with early discharges, the extent of inhibition of late discharges was wider at the concentration of 1%, 1.5%, and 2.0% of sevoflurane. Conclusion: It is indicated that sevoflurane could suppress the transmission of nociceptive and non-nociceptive stimulation at dorsal horn. The suppression on nociceptive imput is stronger than that on non-nociceptive imput when the concentration of sevoflurane is more than 1%.
基金supported by the grants from National Natural Science Foundation of China(No. 30600173,81070893)the Key Project of China Ministry of Education(No. 109003)+1 种基金the National Basic Research Development Program(973 Program) of China (No.2007CB512501)Beijing Municipal Commission of Education "Special Grants for Outstanding Ph.D Program Tutors"
文摘Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.Methods Adult Sprague-Dawley rats were divided into normal and SNL groups.Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.Results Compared with the WDR neurons in normal rats,the WDR neurons in SNL rats showed an increase in excitability,manifested by an enlargement of the receptive field size,an increase in the proportion of neurons that exhibited spontaneous activities,decreases in the Cresponse threshold and latency,and an increase in the C-response duration.In addition,the numbers of A-and C-fiberevoked discharges were smaller in SNL rats than in normal rats.Conclusion The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL.The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.
基金supported by the National Natural Science Foundation of China(Nos.61376033,61006028)the National High-Tech Program of China(Nos.2012AA012302,2013AA014103)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory
文摘As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the -3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the -3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage.
文摘This paper presents a method to control the gain within pulse and accurately measure the amplitude of an underwater sound pulse in a wide dynamic range. In the method a loop composed of a gain controlled unit and a microcomputer is employed.This method also gives satisfactory results when there exist distortion of signal cnvelop and fluctuation of signal amplitude. The basic mathematical model of instantaneous amplitude-gain control and amplitude measurement and its hardware structure are presented. The calibration method of the system for retransmitting (responding) with required sound level is given as well.
基金supported in part by NSFC under Grant 11975140 and in part by the National Key Research and Development Project under Grant 2017YFA0402202.
文摘Purpose HPGe detectors can be used for both dark matter search and neutrinoless double beta decay experiments.However,signal amplitudes of these two experiments are quite different.This paper presents the development of a wide dynamic range CMOS preamplifier for HPGe detectors,which can also be used for low light level photon detection.Methods The structure of a dual-stage dual-gain amplifier was adopted to receive the signals with charges ranging from~0.01 fC to 500 fC.A novel“pre-reset”technique has been proposed to reduce the dead time ratio for large signals.A prototype chip was fabricated and tested.Results A minimum ENC of 43 electrons has been achieved for the high-gain channel at 77 K and the maximum charge of the input signal could be up to 500 fC for the low-gain channel,corresponding to a dynamic range above 90 dB.Conclusions The dual-gain structure of the preamplifier and the“pre-reset”method have been successfully verified,which can be used for HPGe detectors for dark matter and neutrino experiments in the future.
基金ThisresearchwassupportedbytheNationalNaturalScienceFoundationofChina (No .3 90 70 3 3 4)
文摘Objective To analyse the antinociceptive effect of red nucleus (RN) and its role in the antinociceptive effect of muscle spindle afferents. Methods The single units of RN or wide dynamic range (WDR) neuron in the spinal cord dorsal horn were extracelluarly recorded. The effects of RN stimulation on nociceptive responses (C fibers evoked responses, C responses) of WDR neurons were observed. The influence of muscle spindle afferents elicited by intravenous administration of succinylcholine (Sch) on the spontaneous discharge of RN neurons and on C responses of WDR neurons were observed. The effect of muscle spindle afferents on C responses of WDR neurons after unilateral lesions of RN was also observed. Results Electrical stimulation of the RN produced a significantly inhibitory effect on the nociceptive responses of WDR neurons. RN neurons were excited by muscle spindle afferents. Muscle spindle afferents significantly inhibited C response of WDR neurons and this inhibitory effect was reduced by lesions of RN. Conclusion RN neurons have a significant antinociceptive effect and might be involved in the antinociceptive effects elicited by muscle spindle afferents.
基金supported in part by the National Key Research and Development Program of China(No.2023YFB2905700)in part by the National Natural Science Foundation of China(Nos.62171137,62235005,and 61925104)in part by the Natural Science Foundation of Shanghai(No.21ZR1408700)。
文摘Increasing bandwidth requirements have posed significant challenges for traditional access networks.It is difficult for intensity modulation/direct detection to meet the power budget and flexibility requirements of the next-generation passive optical network(PON)at 100G and beyond considering the new requirements.This is driving researchers to develop novel optical access technologies.Low-cost,wide-coverage,and high-flexibility coherent PON is emerging as a strong contender in the competition.In this article,we will review technologies that reduce the complexity of coherent PON(CPON),enabling it to meet the commercial requirements.Also,advanced algorithms and architectures that can enhance system coverage and flexibility are also discussed.