期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range
1
作者 Lingjun He Chuyuan Lin +8 位作者 Peixun Xiong Hui Lin Wenbin Lai Jingran Zhang Fuyu Xiao Liren Xiao Qingrong Qian Qinghua Chen Lingxing Zeng 《Transactions of Tianjin University》 EI CAS 2023年第5期321-346,共26页
Aqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost;as such,they are attracting attention in the field of energy storage.However,the temperature sensitivity of aqueous ba... Aqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost;as such,they are attracting attention in the field of energy storage.However,the temperature sensitivity of aqueous batteries hinders their practical application.The solvent water freezes at low temperatures,and there is a reduction in ionic conductivity,whereas it evaporates rapidly at high temperatures,which causes increased side reactions.This review discusses recent progress in improving the performance of aqueous batteries,mainly with respect to electrolyte engineering and the associated strategies employed to achieve such improvements over a wide temperature domain.The review focuses on fi ve electrolyte engineer-ing(aqueous high-concentration electrolytes,organic electrolytes,quasi-solid/solid electrolytes,hybrid electrolytes,and eutectic electrolytes)and investigates the mechanisms involved in reducing the solidifi cation point and boiling point of the electrolyte and enhancing the extreme-temperature electrochemical performance.Finally,the prospect of further improving the wide temperature range performance of aqueous rechargeable batteries is presented. 展开更多
关键词 Aqueous batteries Electrolyte engineering wide temperature range Hydrogen bond
下载PDF
Gel-state polybenzimidazole proton exchange membranes with flexible alkyl sulfonic acid side chains for a wider operating temperature range(25–240 ℃) 被引量:1
2
作者 Taizhong Zhu Danyi Zhu +3 位作者 Jiazhen Liang Liang Zhang Fei Huang Lixin Xue 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期91-101,I0005,共12页
High-temperature proton exchange membrane fuel cells(HT-PEMFC) possess distinct technical advantages of high output power, simplified water/heat management, increased tolerance to fuel impurities and diverse fuel sour... High-temperature proton exchange membrane fuel cells(HT-PEMFC) possess distinct technical advantages of high output power, simplified water/heat management, increased tolerance to fuel impurities and diverse fuel sources, within the temperature range of 120–200 ℃. However, for practical automobile applications, it was crucial to broaden their low-temperature operating window and enable cold start-up capability. Herein, gel-state phosphoric acid(PA) doped sulfonated polybenzimidazole(PBI) proton exchange membranes(PEMs) were designed and synthesized via PPA sol-gel process and in-situ sultone ring-opening reactions with various proton transport pathways based on absorbed PA, flexible alkyl chain connected sulfonic acid groups and imidazole sites. The effects of flexible alkyl sulfonic acid side chain length and content on PA doping level, proton conductivity, and membrane stability under different temperature and relative humidity(RH) were thoroughly investigated. The prepared gel-state membranes contained a self-assembled lamellar and porous structure that facilitated the absorption of a large amount of PA with rapid proton transporting mechanisms. At room temperature, the optimized membrane exhibited a proton conductivity of 0.069 S cm^(-1), which was further increased to 0.162 and 0.358 S cm^(-1)at 80 and 200 ℃, respectively, without additional humidification. The most significant contribution of this work was demonstrating the feasibility of gel-state sulfonated PBI membranes in expanding HT-PEMFC application opportunities over a wider operating range of 25 to 240 ℃. 展开更多
关键词 wide temperature range Proton exchange membrane Fuel cell Gel-state POLYBENZIMIDAZOLE
下载PDF
Moderately concentrated electrolyte enabling high-performance lithium metal batteries with a wide working temperature range 被引量:1
3
作者 Sisi Wang Zhichen Xue +3 位作者 Fulu Chu Zengqiang Guan Jie Lei Feixiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期201-210,共10页
The electrolyte integrated with lithium metal anodes is subjected to the issues of interfacial compatibility and stability,which strongly influence the performances of high-energy lithium metal batteries.Here,we repor... The electrolyte integrated with lithium metal anodes is subjected to the issues of interfacial compatibility and stability,which strongly influence the performances of high-energy lithium metal batteries.Here,we report a new electrolyte recipe viz.a moderately concentrated electrolyte comprising of 2.4 M lithium bis(fluorosulfonyl)imide(LiFSI)in a cosolvent mixture of fluorinated ethylene carbonate(FEC)and dimethyl carbonate(DMC)with relatively high ion conductivity.Owing to the preferential decomposition of LiFSI and FEC,an inorganic-rich interphase with abundant Li_(2)O and LiF nanocrystals is formed on lithium metal with improved robustness and ion transfer kinetics,enabling lithium plating/stripping with an extremely low overpotential of~8 mV and the average CE of 97%.When tested in Li||LiFePO_(4) cell,this electrolyte provides long-term cycling with a capacity retention of 98.3%after 1000 cycles at 1 C and an excellent rate performance of 20 C,as well as an areal capacity of 1.35 mA h cm^(-2)at the cathode areal loading of 9 mg cm^(-2).Moreover,the Li||LiFePO_(4) cell exhibits excellent wide-temperature performances(-40~60℃),including long-term cycling stability over 2600 cycles without visible capacity fading at 0℃,as well as extremely high average CEs of 99.6%and 99.8% over 400 cycles under-20℃ and 45℃. 展开更多
关键词 Moderately concentrated electrolyte wide temperature range LiFePO_(4)cathode Lithium metal battery Solid electrolyte interphase
下载PDF
Exploiting ultra-large linear elasticity over a wide temperature range in nanocrystalline NiTi alloy 被引量:1
4
作者 Zhen Sun Shijie Hao +8 位作者 Genfa Kang Yang Ren Junpeng Liu Ying Yang Xiangguang Kong Bo Feng Cheng Wang Kun Zhao Lishan Cui 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期197-203,共7页
Many shape memory alloys can support large recoverable strains of a few percent by reversible stressinduced martensite transformation,yet they behave non-linear within a narrow operating temperature ra nge.Developing ... Many shape memory alloys can support large recoverable strains of a few percent by reversible stressinduced martensite transformation,yet they behave non-linear within a narrow operating temperature ra nge.Developing the bulk metallic materials with ultra-large linear elasticity over a wide tempe rature range has proven to be difficult.In this work,a material design concept was proposed,that is true elastic deformation and reversible twinning-detwinning deformation run in parallel to overcome this challe nge.By engineering the residual internal stress to realize the concurrency of true elastic deformation and twinning-detwinning deformation,a bulk nanocrystalline NiTi that possesses an ultra-large linear elastic strain up to 5.1 % and a high yield stress of 2.16 GPa over a wide temperature range of 270℃ was developed.This study offers a new avenue for developing the metallic materials with ultra-large linear elasticity over a wide temperature range of 270℃(from 70℃ to-197℃). 展开更多
关键词 NITI NANOCRYSTALLINE Linear-elasticity wide temperature range TWINNING
原文传递
Directly modulated active distributed reflector distributed feedback lasers over wide temperature range operation(-40 to 85℃) 被引量:1
5
作者 刘功海 赵龚媛 +2 位作者 张功 陆巧银 国伟华 《Chinese Optics Letters》 SCIE EI CAS CSCD 2020年第6期45-49,共5页
We experimentally demonstrated that the distributed feedback(DFB) lasers with the active distributed reflector achieved a 25.8 Gb/s operation over a wide temperature range of -40 to 85℃. The DFB lasers can achieve ad... We experimentally demonstrated that the distributed feedback(DFB) lasers with the active distributed reflector achieved a 25.8 Gb/s operation over a wide temperature range of -40 to 85℃. The DFB lasers can achieve additional feedback from an active distributed reflector with accurately controlled phase, and single-mode yields are not related to the position of cleave. The threshold currents of the fabricated laser are 6 mA and 20 mA at -40℃ and 85℃, respectively. The side mode suppression ratio of the fabricated laser is above 50 dB at all temperatures. Transmissions of 25.8 Gb/s after 10 km single-mode fibers with clear eye openings and less than 0.8 dB power penalty over a wide temperature range have been demonstrated as well. 展开更多
关键词 distributed feedback laser wide temperature range active distributed reflector directly modulated laser
原文传递
Wide temperature range,air stable,transparent,and self-powered photodetectors enabled by a hybrid film of graphene and singlewalled carbon nanotubes
6
作者 Ying Yue Di Zhang +7 位作者 Pengyu Wang Xin Wu Yuejuan Zhang Yanchun Wang Xiao Zhang Xiaojun Wei Huaping Liu Weiya Zhou 《Nano Research》 SCIE EI 2024年第7期6582-6593,共12页
Transparent photovoltaic devices(TPVDs)have attracted increasing attention in emerging electronic devices.As the application scenarios extend,there raise higher requirements regarding the stability and operating tempe... Transparent photovoltaic devices(TPVDs)have attracted increasing attention in emerging electronic devices.As the application scenarios extend,there raise higher requirements regarding the stability and operating temperature range of TPVDs.In this work,a unique preparation strategy is proposed for air stable TPVD with a wide operating temperature range,i.e.,a nanoscale architecture termed as H-TPVD is constructed that integrates a free-standing and highly transparent conductive hybrid film of graphene and single-walled carbon nanotubes(G-SWNT TCF for short)with a metal oxide NiO/TiO_(2)heterojunction.The preparation approach is suitable for scaling up.Thanks to the excellent transparent conductivity of the freestanding G-SWNT hybrid film and the ultrathin NiO/TiO_(2)heterojunction(100 nm),H-TPVD selectively absorbs the ultraviolet(UV)band of sunlight and has a transparency of up to 71%in the visible light.The integrated nanoscale architecture manifests the significant holecollecting capability of the G-SWNT hybrid film and the efficient carrier generation and separation within the ultrathin NiO/TiO_(2)heterojunction,resulting in excellent performance of the H-TPVD with a specific detectivity of 2.7×10^(10) Jones.Especially,the freestanding G-SWNT TCF is a super stable and non-porous two-dimensional film that can insulate gas molecules,thereby protecting the surface properties of NiO/TiO_(2)heterojunctions and enhancing the stability of H-TPVD.Having subjected to 20,000 cycles and storage in air for three months,the performance parameters such as photo-response signal,output power,and specific detectivity show no noticeable degradation.In particular,the as-fabricated self-powered H-TPVD can operate over a wide temperature range from −180 to 300℃,and can carry out solar-blind UV optical communication in this range.In addition,the 4×4 array H-TPVD demonstrates clear optical imaging.These results make it possible for H-TPVD to expand its potential application scenarios. 展开更多
关键词 transparent photovoltaic devices hybrid films of graphene and single-walled carbon nanotubes metal oxides stability wide temperature range
原文传递
Electrostatic Interaction Tailored Anion-Rich Solvation Sheath Stabilizing High-Voltage Lithium Metal Batteries 被引量:2
7
作者 Junru Wu Ziyao Gao +6 位作者 Yao Wang Xu Yang Qi Liu Dong Zhou Xianshu Wang Feiyu Kang Baohua Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期147-159,共13页
Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Her... Through tailoring interfacial chemistry,electrolyte engineering is a facile yet effective strategy for highperformance lithium(Li)metal batteries,where the solvation structure is critical for interfacial chemistry.Herein,the effect of electrostatic interaction on regulating an anion-rich solvation is firstly proposed.The moderate electrostatic interaction between anion and solvent promotes anion to enter the solvation sheath,inducing stable solid electrolyte interphase with fast Li+transport kinetics on the anode.This asdesigned electrolyte exhibits excellent compatibility with Li metal anode(a Li deposition/stripping Coulombic efficiency of 99.3%)and high-voltage LiCoO_(2) cathode.Consequently,the 50μm-thin Li||high-loading LiCoO_(2) cells achieve significantly improved cycling performance under stringent conditions of high voltage over 4.5 V,lean electrolyte,and wide temperature range(-20 to 60℃).This work inspires a groundbreaking strategy to manipulate the solvation structure through regulating the interactions of solvent and anion for highperformance Li metal batteries. 展开更多
关键词 Electrostatic interaction Anion-rich solvation sheath High voltage Lithium metal batteries wide temperature range
下载PDF
Monolithic integration of electroabsorption modulators and tunnel injection distributed feedback lasers using quantum well intermixing
8
作者 汪洋 潘教青 +2 位作者 赵玲娟 朱洪亮 王圩 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期328-333,共6页
Electroabsorption modulators combining Franz-Keldysh effect and quantum confined Stark effect have been mono-lithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well in... Electroabsorption modulators combining Franz-Keldysh effect and quantum confined Stark effect have been mono-lithically integrated with tunnel-injection quantum-well distributed feedback lasers using a quantum well intermixing method. Superior characteristics such as extinction ratio and temperature insensitivity have been demonstrated at wide temperature ranges. 展开更多
关键词 electroabsorption modulator tunnel injection wide temperature range operation quantum well intermixing
下载PDF
Diminishing ether-oxygen content of electrolytes enables temperature-immune lithium metal batteries
9
作者 Tao Liu Jingnan Feng +9 位作者 Zhe Shi Huajun Li Weina Zhao Minglei Mao Xiangzhen Zhu Yong-Sheng Hu Hong Li Xuejie Huang Liquan Chen Liumin Suo 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第9期2700-2710,共11页
The reversibility of lithium(Li) metal anodes is highly susceptible to temperature,owing to the aggravated side reactions at high temperatures and serious Li dendrite growth at low temperatures.Thus it is extremely ch... The reversibility of lithium(Li) metal anodes is highly susceptible to temperature,owing to the aggravated side reactions at high temperatures and serious Li dendrite growth at low temperatures.Thus it is extremely challenging to simultaneously realize the high Li reversibility in both low and high temperature scenarios.Herein,an oxygen-free solvent(n-hexane,HEX) assisted with the hexyl methyl ether and 1 mol L^(-1)lithium bis(fluorosulfonyl)imide is proposed to constitute an electrolyte for temperatureimmune lithium metal batteries.It demonstrates that the HEX not only greatly suppresses the solvent reduction even at high temperatures but also weaken the Li~+-solvent interaction for the facile Li-ion desolvation,leading to high Li Coulombic efficiencies(99.59% at 25℃,99.30%at 60℃ and 98.75% at -30℃) and the dendrite-free Li plating from -30℃ to 60℃.Benefitting from the low density and temperature-immune properties of our electrolyte,the sulfurized polyacrylonitrile(3.8mAh cm^(-2))||Li(60 μm) pouch-cells deliver 278 Wh kg^(-1)energy density and maintain the stable performance over 50 cycles,and retain 248 and 320 Wh kg^(-1) energy density at -30℃ and 60℃,respectively.This work provides a new perspective on the electrolyte design for wide-temperature Li metal batteries. 展开更多
关键词 wide temperature range oxygen-free solvent dendrite-free Li plating high Coulombic efficiencies lithium metal batteries
原文传递
A Frequency Tunable Liquid Cavity Bandpass Filter
10
作者 Guoxuan Zhang Lei Xing +3 位作者 Qian Xu Yongjiu Zhao Chaoyun Song Yi Huang 《Electromagnetic Science》 2023年第2期61-70,共10页
A liquid-loaded frequency tunable cavity bandpass filter (BPF) is presented. A dielectric fluidic material, dimethyl silicone oil (DSO) withexcellent thermophysical characteristics (working temperature from −50 ℃ to ... A liquid-loaded frequency tunable cavity bandpass filter (BPF) is presented. A dielectric fluidic material, dimethyl silicone oil (DSO) withexcellent thermophysical characteristics (working temperature from −50 ℃ to 180 ℃) and extremely low loss tangent is employed as a dielectric loading.The frequency reconfigurability of the proposed design is realized by altering the liquid level inside the cavity resonator. The filter achieves a widefrequency tuning range as well as a high Q factor. Moreover, this design shows significantly improved environmental suitability in extreme temperaturecases, outperforming the existing microfluidic-based RF devices using water or liquid metals. A four-pole tunable cavity bandpass filter is designed andverified. A cross-coupling structure comprising a metal loop structure is used to introduce transmission zeros in the proposed filter, which enhances theskirt selectivity and out-of-band rejections. We demonstrate that the center frequency of the proposed BPF can be tuned from 4.92 GHz to 6.16 GHz,and the filter achieves a high Q factor between 521 and 1527. The measured results agree well with simulated results. 展开更多
关键词 Bandpass filter(BPF) Cavity resonators Microfluidic circuit Liquid dielectric wide temperature range
原文传递
Flexible lead-free BFO-based dielectric capacitor with large energy density,superior thermal stability,and reliable bending endurance 被引量:6
11
作者 Changhong Yang Jin Qian +7 位作者 Panpan Lv Haitao Wu Xiujuan Lin Kun Wang Jun Ouyang Shifeng Huang Xin Cheng Zhenxiang Cheng 《Journal of Materiomics》 SCIE EI 2020年第1期200-208,共9页
As an essential energy-stored device,the inorganic dielectric film capacitor plays an irreplaceable role in high-energy pulse power technology area.In this work,propelled by the challenge of overcoming the bottlenecks... As an essential energy-stored device,the inorganic dielectric film capacitor plays an irreplaceable role in high-energy pulse power technology area.In this work,propelled by the challenge of overcoming the bottlenecks of inflexibility and inferior energy storage density of the pure BiFeO3 films,the mica with high bendability and thermal stability is adopted as substrate,and the relaxor ferroelectric(Sr_(0.7)Bi_(0.2))TiO_(3) is introduced to form solid solution to introduce relaxor behavior.The subsequently fabricated 0.3Bi(Fe_(0.95)Mn_(0.05))O_(3)-0.7(Sr_(0.7)Bi_(0.2))TiO_(3)(BFMO-SBT)thin film capacitor exhibits a high recoverable energy storage density(W_(rec)=61 J cm^(-3))and a high efficiency(η=75%)combined with a fast discharging rate(23.5 μs)due to the large polarization difference(ΔP=59.4 μC cm^(-2)),high breakdown strength(E_(b)=3000 kV cm^(-1)),and the strong relaxor dispersion(γ=1.78).Of particular importance is the capacitor presents excellent stability of energy storage performance,including a wide working temperature window of -50-200℃,fatigue endurance of 108 cycles,and frequency range of 500 Hz-20 kHz.Furthermore,there are no obviously deteriorations on energy storage capability under various bending states and after 104 times of mechanical bending cycles.All these results indicate that BFMO-SBT on mica film capacitor has potential application in the future flexible electronics. 展开更多
关键词 FLEXIBLE BiFeO_(3)film Energy storage performance wide temperature range Bending-endurance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部