This paper proposes a PMU (phasor measurement unit) based monitoring and estimation scheme of power system small-signal stability in Singapore-Malaysia interconnection power system through a 50-Hz and 500 kV transmi...This paper proposes a PMU (phasor measurement unit) based monitoring and estimation scheme of power system small-signal stability in Singapore-Malaysia interconnection power system through a 50-Hz and 500 kV transmission line. Two PMUs are installed in the power system interconnection network of Singapore-Malaysia. One PMU is located in Singapore and the other one in Malaysia (Penang). Both PMUs measure the single-phase voltage phasor. The data filtering technique based on FFT (Fast Fourier Transform) is employed to extract oscillation data for single mode. Finally, some analysis results of monitoring and estimation of Singapore-Malaysia interconnected power system based on application practice of the CampusWAMS are presented and analyzed.展开更多
为研究分网接入方式下电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)系统的交互振荡模式及阻尼特征,基于系统的状态空间模型及系列文章(一)建立的运动方程模型,提取了表征逆变侧...为研究分网接入方式下电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)系统的交互振荡模式及阻尼特征,基于系统的状态空间模型及系列文章(一)建立的运动方程模型,提取了表征逆变侧电气与控制环节强耦合特性的多个弱阻尼交互振荡模式,研究了不同短路比工况下交互振荡模式的变化特征。在此基础上,通过复转矩系数法量化评估了整流侧/逆变侧内部自稳性路径及双极交互作用致稳性路径对主导交互振荡模式阻尼特性的贡献度。结果表明:1)不同短路比工况下交互振荡模式的阻尼比会进行重新分配;2)当逆变侧正负极短路比相差较大时,双极交互作用较弱,正负极系统的稳定性由2个交互振荡模式各自主导,且稳定性特征有所差异;3)当逆变侧正负极短路比相近时,双极间动态交互加强,交互振荡模式会同时主导参与系统两极的稳定性,正负极稳定性特征相似。展开更多
Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispe...Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.展开更多
This paper proposes a wavelet-based data compression method to compress the recorded data of oscillations in power systems for wide-area measurement systems. Actual recorded oscillations and simulated oscillations are...This paper proposes a wavelet-based data compression method to compress the recorded data of oscillations in power systems for wide-area measurement systems. Actual recorded oscillations and simulated oscillations are compressed and reconstructed by the waveletbased data compression method to select the best wavelet functions and decomposition scales according to the criterion of the minimum compression distortion composite index, for a balanced consideration of compression performance and reconstruction accuracy. Based on the selections, the relationship between the oscillation frequency and the corresponding optimal wavelet and scale is discussed, and a piecewise linear model of the base-2 logarithm of the frequency and the order of the wavelet is developed, in which different pieces represent different scales. As a result, the wavelet function and decomposition scale can be selected according to the oscillation frequency. Compared with the wavelet-based data compression method with a fixed wavelet scale for disturbance signals and the real-time data compression method based on exception compression and swing door trending for oscillations, the proposed method can provide high compression ratios and low distortion rates.展开更多
文摘This paper proposes a PMU (phasor measurement unit) based monitoring and estimation scheme of power system small-signal stability in Singapore-Malaysia interconnection power system through a 50-Hz and 500 kV transmission line. Two PMUs are installed in the power system interconnection network of Singapore-Malaysia. One PMU is located in Singapore and the other one in Malaysia (Penang). Both PMUs measure the single-phase voltage phasor. The data filtering technique based on FFT (Fast Fourier Transform) is employed to extract oscillation data for single mode. Finally, some analysis results of monitoring and estimation of Singapore-Malaysia interconnected power system based on application practice of the CampusWAMS are presented and analyzed.
文摘为研究分网接入方式下电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)系统的交互振荡模式及阻尼特征,基于系统的状态空间模型及系列文章(一)建立的运动方程模型,提取了表征逆变侧电气与控制环节强耦合特性的多个弱阻尼交互振荡模式,研究了不同短路比工况下交互振荡模式的变化特征。在此基础上,通过复转矩系数法量化评估了整流侧/逆变侧内部自稳性路径及双极交互作用致稳性路径对主导交互振荡模式阻尼特性的贡献度。结果表明:1)不同短路比工况下交互振荡模式的阻尼比会进行重新分配;2)当逆变侧正负极短路比相差较大时,双极交互作用较弱,正负极系统的稳定性由2个交互振荡模式各自主导,且稳定性特征有所差异;3)当逆变侧正负极短路比相近时,双极间动态交互加强,交互振荡模式会同时主导参与系统两极的稳定性,正负极稳定性特征相似。
基金supported by the National Natural Science Foundation of China(Grant No.62273207,61821004,62350083,62192755)the Future Young Scholars Program of Shandong University,China.
文摘Out-of-step oscillation is a very destructive physical phenomenon in power system, which could directly cause big blackout accompanied by serious sociology-economic impacts. Out-of-step splitting control is an indispensable means, which could protect the system from major shocks of out-of-step oscillation. After years of development, it has achieved certain amount of research results. Have the existing methods been able to meet the requirements of out-of-step splitting? What improvements are needed? Under this background, this review is written. It combs the development of out-of-step splitting control technologies and analyzes the technical routes and characteristics of different methods. It points out the contradiction between rapidity and optimality is the biggest technical problem, existing in both the traditional local measurement based out-of-step splitting protection and the wide-area information based out-of-step splitting protection. It further points out that the advantages of the two types of protections can be combined with the unique physical characteristics of the out-of-step center to form a more advantageous splitting strategy. Besides, facing the fact of large-scale renewable energy access to power grid in recent years, this review also analyzes the challenges brought by it and provides some corresponding suggestions. It is hoped to provide some guidance for the subsequent research work.
文摘This paper proposes a wavelet-based data compression method to compress the recorded data of oscillations in power systems for wide-area measurement systems. Actual recorded oscillations and simulated oscillations are compressed and reconstructed by the waveletbased data compression method to select the best wavelet functions and decomposition scales according to the criterion of the minimum compression distortion composite index, for a balanced consideration of compression performance and reconstruction accuracy. Based on the selections, the relationship between the oscillation frequency and the corresponding optimal wavelet and scale is discussed, and a piecewise linear model of the base-2 logarithm of the frequency and the order of the wavelet is developed, in which different pieces represent different scales. As a result, the wavelet function and decomposition scale can be selected according to the oscillation frequency. Compared with the wavelet-based data compression method with a fixed wavelet scale for disturbance signals and the real-time data compression method based on exception compression and swing door trending for oscillations, the proposed method can provide high compression ratios and low distortion rates.