A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ...A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.展开更多
This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing...This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.展开更多
In order to estimate the number of coherent sources, a Hankel matrix with the size of half the number of the received arrays is constructed using snapshot data of observed vectors. And the rank of the Hankel matrix is...In order to estimate the number of coherent sources, a Hankel matrix with the size of half the number of the received arrays is constructed using snapshot data of observed vectors. And the rank of the Hankel matrix is only related with the number of signal sources, no matter the signals are uncorrelated or coherent. We can get the signal and noise eigenvalues by conducting the singular value decomposition (SVD) to the Hankel matrix, the source number can be obtained by calculating the maximum ratio of each eigenvalue pair. The complexity of the algorithm is reduced greatly as only part of the observed data (single snapshot) is used. The Monte-Carlo simulation results demonstrate the feasibility of the algorithm.展开更多
A method of direction of arrival (DOA) estimation of coherent sources is proposed, which is based on arbitrary plane arrays. After constructing the mathematical model of coherent sources, virtual array transformation ...A method of direction of arrival (DOA) estimation of coherent sources is proposed, which is based on arbitrary plane arrays. After constructing the mathematical model of coherent sources, virtual array transformation and MUSIC algorithm are used to realize the azimuth estimation of coherent sources, which improved the DOA estimation performance greatly. According to the computer simulation, its validity is confirmed.展开更多
Synchronized time lens source is a novel method to generate synchronized optical pulses to mode-locked lasers,and has found widespread applications in coberent Raman scattering microscopy.Relative timing jitter betwee...Synchronized time lens source is a novel method to generate synchronized optical pulses to mode-locked lasers,and has found widespread applications in coberent Raman scattering microscopy.Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization peformance of such synchronized laser sys-tems.However,the origins of the relative timing jitter in such systens are not fully determined,which in turn prevents the experimental efforts to optimize the synchronization perfornance.Here,we demonstrate,through theoretical modeling and mumerical simulation,that the photo-detction could be one physical origin of the relative timing jitter.Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated,revealing different qualitative and quantitative behavios.Based on the nature of this photo-detection-induced timing jitter,we further propose several strategies to reduce the relative timing jitter.Our thoretical results will provide guidelines for optimizing synchronization performance in experiments.展开更多
A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross...A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross-spectral density followed by the optimal approximation of the obtained results in the chosen basis of modal functions. The proposed definition is illustrated by the results of numerical simulation.展开更多
Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protoco...Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.展开更多
We demonstrate a high-speed swept-source optical coherence tomography (SS-OCT) system, which is based on a high-speed swept light source and a Mach-Zehnder interferometer with a high-speed photodetector. The light sou...We demonstrate a high-speed swept-source optical coherence tomography (SS-OCT) system, which is based on a high-speed swept light source and a Mach-Zehnder interferometer with a high-speed photodetector. The light source is an external-cavity laser tuned by a KTN electro-optic deflector, which exhibits a very fast response and large deflection. The scanning wavelength range is almost 80 nm up to 200 kHz with a ±400-V deflector driving voltage. The system acquires 1 mm × 1 mm images consisting of 200 × 200 pixels within few milliseconds. We present preliminary SS-OCT images of an in-vitro human nail and an in-vivo finger pad.展开更多
AIM: To assess the relationship between choroidal thickness and renal function in diabetic patients. METHODS: Cross-sectional retrospective clinical study of 42 eyes of 21 ocular treatment-na?ve diabetic patients. Dem...AIM: To assess the relationship between choroidal thickness and renal function in diabetic patients. METHODS: Cross-sectional retrospective clinical study of 42 eyes of 21 ocular treatment-na?ve diabetic patients. Demographic data included: age, sex, type and course of diabetes. Ocular data included: severity of diabetic retinopathy;retinal thickness at the central macular region, as well as choroidal thickness at the central and paracentral quadrants, using automatically generated maps by swept-source optical coherence tomography;presence of cystic macular edema;and ocular axial length(AXL). Lab-test parameters included: glycated hemoglobin(HbA1c), albuminuria, albumin/creatinine ratio in urine, and glomerular filtration rate. RESULTS: A significant negative correlation was mainly observed between several choroidal thicknesses, age(P<0.020) and ocular AXL(P<0.030). On the contrary, a significant positive correlation was found between all choroidal thicknesses, HbA1 c(P<0.035) and albuminuria(P<0.040). CONCLUSION: Choroidal thickness can represent an additional tool to help clinicians predicting the renal status in ocular treatment-na?ve diabetic patients.展开更多
This paper presents a comprehensive technical overview of the Linac Coherent Light Source II(LCLS-II)photoinjector laser system,its first and foremost component.The LCLS-II photoinjector laser system serves as an upgr...This paper presents a comprehensive technical overview of the Linac Coherent Light Source II(LCLS-II)photoinjector laser system,its first and foremost component.The LCLS-II photoinjector laser system serves as an upgrade to the original LCLS at SLAC National Accelerator Laboratory.This advanced laser system generates high-quality laser beams for the LCLS-II,contributing to the instrument's unprecedented brightness,precision and flexibility.Our discussion extends to the various subsystems that comprise the photoinjector,including the photocathode laser,laser heater and beam transport systems.Lastly,we draw attention to the ongoing research and development infrastructure underway to enhance the functionality and efficiency of the LCLS-II,and similar X-ray free-electron laser facilities around the world,thereby contributing to the future of laser technology and its applications.展开更多
To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition...To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.展开更多
On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from...On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.展开更多
Virtual source(VS)imaging has been proposed to improve image resolution in medical ultrasound imaging.However,VS obtains a limited contrast due to the non-adaptive delay-and-sum(DAS)beamforming.To improve the image co...Virtual source(VS)imaging has been proposed to improve image resolution in medical ultrasound imaging.However,VS obtains a limited contrast due to the non-adaptive delay-and-sum(DAS)beamforming.To improve the image contrast and provide an enhanced resolution,adaptive weighting algorithms were applied in VS imaging.In this paper,we proposed an adjustable generalized coherence factor(aGCF)for the synthetic aperture sequential beamforming(SASB)ofVS imaging to improve image quality.The value of aGCF is adjusted by a sequence intensity factor(SIF)that is defined as the ratio between the effective low resolution scan lines(LRLs)intensity and total LRLs strength.The aGCF-weighted VS(aGCF-VS)images were compared with standard VS images and GCF-weighted VS(GCF-VS)images.Simulation and experimental results demonstrated that the contrast ratio(CR)and contrastto-noise ratio(CNR)of aGCF-VS are greatly improved,compared with standard VS imaging.And in comparison with GCF-VS,aGCF-VS can obtain better CNR and speckle signal-to-noise ratio(sSNR)whilemaintaining similar CR.Therefore,aGCF is suitable for VS imaging to improve contrast and preserve speckle pattern.展开更多
In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a cir...In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a circulator,a coupler,and a tunable filter.In the structure,the lightpasses through the nonlinear medium(SOA)twice in two opposite directions,which excites thenonlinear ffect and increases the performance of the swept source.The tunable filter is based on apolygon rotating mirror and gratings.Traditionally,multiple SOAs are adopted to improve thesweep range and the optical power,which increases the cost and complexity of the swept source.The method proposed in this paper can improve the spectral range and optical power of the sweptsources without additional accessories.For the short-cavity swept source,the power increasesfrom 6 mW to 7.7 mW,and the sweep range increases from 98 nm to 120 nm.The broadband swept sources could have wide applications in biomedical imaging,sensor system,measurementand so on.展开更多
Coherent diffraction radiation (CDR), generated by relativistic femtosecond electron bunches passing through an aperture in a metallic foil, is becoming widely used as a high brightness, coherent, polarized, and broad...Coherent diffraction radiation (CDR), generated by relativistic femtosecond electron bunches passing through an aperture in a metallic foil, is becoming widely used as a high brightness, coherent, polarized, and broad- band terahertz radiation source. It is one of the most promising technique for non-destructive beam diagnostics in ac- celerators. In this paper, how to produce CDR is studied by utilizing femtosecond electron bunches at wavelengths equal to or longer than the bunch length with the aperture size at the condition of a≤γλ/(2π), which is provided by Shanghai Deep Ultraviolet-Free Electron Laser (SDUV-FEL) facility. General characteristics of CDR at SDUV-FEL are analyzed and numerically calculated. The results show that the radiance of this radiation within the frequency range from 0.2 up to 5 terahertz greatly exceeds that available from conventional black body radiation or synchrotron radiation.展开更多
The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In add...The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In addition, most of them are designed for special angular signal distribution functions. As a result, their performances will degenerate when deal with different sources with different angular signal distribution functions or unknown angular signal distribution functions. In this paper, a low-complexity decoupled DOAs estimation method without searching using two parallel uniform linear arrays (ULAs) is proposed for coherently distributed sources, as well as a novel parameter matching method. It can resolve the problems mentioned above efficiently. Simulation results validate the effectiveness of our approach.展开更多
The process of high harmonic generation(HHG)enables the development of table-top sources of coherent extreme ultraviolet(XUV)light.Although these are now matured sources,they still mostly rely on bulk laser technology...The process of high harmonic generation(HHG)enables the development of table-top sources of coherent extreme ultraviolet(XUV)light.Although these are now matured sources,they still mostly rely on bulk laser technology that limits the attainable repetition rate to the low kilohertz regime.Moreover,many of the emerging applications of such light sources(e.g.,photoelectron spectroscopy and microscopy,coherent diffractive imaging,or frequency metrology in the XUV spectral region)require an increase in the repetition rate.Ideally,these sources are operated with a multi-MHz repetition rate and deliver a high photon flux simultaneously.So far,this regime has been solely addressed using passive enhancement cavities together with low energy and high repetition rate lasers.Here,a novel route with significantly reduced complexity(omitting the requirement of an external actively stabilized resonator)is demonstrated that achieves the previously mentioned demanding parameters.A krypton-filled Kagome photonic crystal fiber is used for efficient nonlinear compression of 9 μJ,250 fs pulses leading to,7 μJ,31 fs pulses at 10.7 MHz repetition rate.The compressed pulses are used for HHG in a gas jet.Particular attention is devoted to achieving phase-matched(transiently)generation yielding.10^(13) photons s^(-1)(.50 μW)at 27.7 eV.This new spatially coherent XUV source improved the photon flux by four orders of magnitude for direct multi-MHZ experiments,thus demonstrating the considerable potential of this source.展开更多
Free-electron light sources feature extraordinary luminosity,directionality,and coherence,which has enabled significant scientific progress in fields including physics,chemistry,and biology.The next generation of ligh...Free-electron light sources feature extraordinary luminosity,directionality,and coherence,which has enabled significant scientific progress in fields including physics,chemistry,and biology.The next generation of light sources has aimed at compact radiation sources driven by free electrons,with the advantages of reduction in both space and cost.With the rapid development of ultra-intense and ultrashort lasers,great effort has been devoted to the quest for compact free-electron lasers(FELs).This review focuses on the current efforts and advancements in the development of compact FELs,with a particular emphasis on two notable paths:the development of compact accelerators and the construction of micro undulators based on innovative materials/structures or optical modulation of electrons.In addition,the physical essence of inverse Compton scattering is discussed,which offers remarkable capability to develop an optical undulator with a spatial period that matches the optical wavelength.Recent scientific developments and future directions for miniaturized and integrated free-electron coherent light sources are also reviewed.In the future,the prospect of generating ultrashort electron pulses will provide fascinating means of producing superradiant radiation,promising high brilliance and coherence even on a micro scale using optical micro undulators.展开更多
We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism. The multipl...We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism. The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering theory. Two-pion interferometry with effects of the multiple scattering and source collective expansion is examined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically. We do not find observable effect of either the multiple scattering or the source collective expansion on HBT chaotic parameter.展开更多
The basic principles of the partial and multiple coherence ananlysis and their utilization on vibration source identification are discussed in detail in this paper. The partial coherence analysis is the effective meth...The basic principles of the partial and multiple coherence ananlysis and their utilization on vibration source identification are discussed in detail in this paper. The partial coherence analysis is the effective method of vibration source identification in multiple input single output systems.Formerly, there was not any this kind of function in the signal processor, and there was not any special software too. The software which we developed and used in the 7T 17S signal processor has this function. This software can be used not only for the partial and multiple coherence analysis of signal, but also for the correlation analysis, power spectrum analysis, transfer function analysis et al.We used this software to make the identifcation of the vibration source of the car floor board of electrical measuring vehicle, and to find the main factors which effect the vibration of the car board.The excellent result was obtained. This method can also be used for making the identifications of noise source and other sources.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0645)
文摘A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6137116961601167)+2 种基金the Jiangsu Natural Science Foundation(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(K201826)the Fundamental Research Funds for the Central Universities(NE2017103)
文摘This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.
基金Project supported by the Research and Innovation Project of Education Commission of Shanghai Municipality (Grant No.11YZ14)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘In order to estimate the number of coherent sources, a Hankel matrix with the size of half the number of the received arrays is constructed using snapshot data of observed vectors. And the rank of the Hankel matrix is only related with the number of signal sources, no matter the signals are uncorrelated or coherent. We can get the signal and noise eigenvalues by conducting the singular value decomposition (SVD) to the Hankel matrix, the source number can be obtained by calculating the maximum ratio of each eigenvalue pair. The complexity of the algorithm is reduced greatly as only part of the observed data (single snapshot) is used. The Monte-Carlo simulation results demonstrate the feasibility of the algorithm.
文摘A method of direction of arrival (DOA) estimation of coherent sources is proposed, which is based on arbitrary plane arrays. After constructing the mathematical model of coherent sources, virtual array transformation and MUSIC algorithm are used to realize the azimuth estimation of coherent sources, which improved the DOA estimation performance greatly. According to the computer simulation, its validity is confirmed.
基金supported by the National Natural Science Foundation of China (11404218)the Science and Technology Innovation Commission of Shenzhen (JCYJ20160307150657874,KQJSCX-20160226194151,KQTD20150710165601017)+1 种基金the Project of Department of Education of Guangdong Province (2014KTSCX114)the Natural Science Foundation of SZU (00002701).
文摘Synchronized time lens source is a novel method to generate synchronized optical pulses to mode-locked lasers,and has found widespread applications in coberent Raman scattering microscopy.Relative timing jitter between the mode-locked laser and the synchronized time-lens source is a key parameter for evaluating the synchronization peformance of such synchronized laser sys-tems.However,the origins of the relative timing jitter in such systens are not fully determined,which in turn prevents the experimental efforts to optimize the synchronization perfornance.Here,we demonstrate,through theoretical modeling and mumerical simulation,that the photo-detction could be one physical origin of the relative timing jitter.Comparison with relative timing jitter due to the intrinsic timing jitter of the mode-locked laser is also demonstrated,revealing different qualitative and quantitative behavios.Based on the nature of this photo-detection-induced timing jitter,we further propose several strategies to reduce the relative timing jitter.Our thoretical results will provide guidelines for optimizing synchronization performance in experiments.
文摘A new definition of the alternative coherent-mode representation of a random planar source with the a priori unknown statistical properties is proposed. This definition is based on the measurements of the source cross-spectral density followed by the optimal approximation of the obtained results in the chosen basis of modal functions. The proposed definition is illustrated by the results of numerical simulation.
基金Supported by the National Basic Research Program of China under Grant No 2013CB338002the National Natural Science Foundation of China under Grant Nos 11304397 and 61505261
文摘Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift (RRDPS) protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.
文摘We demonstrate a high-speed swept-source optical coherence tomography (SS-OCT) system, which is based on a high-speed swept light source and a Mach-Zehnder interferometer with a high-speed photodetector. The light source is an external-cavity laser tuned by a KTN electro-optic deflector, which exhibits a very fast response and large deflection. The scanning wavelength range is almost 80 nm up to 200 kHz with a ±400-V deflector driving voltage. The system acquires 1 mm × 1 mm images consisting of 200 × 200 pixels within few milliseconds. We present preliminary SS-OCT images of an in-vitro human nail and an in-vivo finger pad.
基金OFTARED “RD16/0008/0010”,funded by Instituto de Salud Carlos Ⅲ,integrated in the national I+D+i 2013-2016co-funded by European Union(ERDF/ESF,“Investing in your future”)
文摘AIM: To assess the relationship between choroidal thickness and renal function in diabetic patients. METHODS: Cross-sectional retrospective clinical study of 42 eyes of 21 ocular treatment-na?ve diabetic patients. Demographic data included: age, sex, type and course of diabetes. Ocular data included: severity of diabetic retinopathy;retinal thickness at the central macular region, as well as choroidal thickness at the central and paracentral quadrants, using automatically generated maps by swept-source optical coherence tomography;presence of cystic macular edema;and ocular axial length(AXL). Lab-test parameters included: glycated hemoglobin(HbA1c), albuminuria, albumin/creatinine ratio in urine, and glomerular filtration rate. RESULTS: A significant negative correlation was mainly observed between several choroidal thicknesses, age(P<0.020) and ocular AXL(P<0.030). On the contrary, a significant positive correlation was found between all choroidal thicknesses, HbA1 c(P<0.035) and albuminuria(P<0.040). CONCLUSION: Choroidal thickness can represent an additional tool to help clinicians predicting the renal status in ocular treatment-na?ve diabetic patients.
基金the support from the SLAC National Accelerator Laboratory,the U.S.Department of Energy(DOE),the Office of Science,Office of Basic Energy Sciences under Contract No.DE-AC02-76SF00515,No.DE-SC0022559,No.DE-SC0022464,No.DE-FOA0002859the National Science Foundation under Contract No.2231334the U.S.Department of Defense under a National Defense Science and Engineering Fellowship。
文摘This paper presents a comprehensive technical overview of the Linac Coherent Light Source II(LCLS-II)photoinjector laser system,its first and foremost component.The LCLS-II photoinjector laser system serves as an upgrade to the original LCLS at SLAC National Accelerator Laboratory.This advanced laser system generates high-quality laser beams for the LCLS-II,contributing to the instrument's unprecedented brightness,precision and flexibility.Our discussion extends to the various subsystems that comprise the photoinjector,including the photocathode laser,laser heater and beam transport systems.Lastly,we draw attention to the ongoing research and development infrastructure underway to enhance the functionality and efficiency of the LCLS-II,and similar X-ray free-electron laser facilities around the world,thereby contributing to the future of laser technology and its applications.
基金the National Natural Science Foundation of China (60601016)
文摘To cope with the scenario where both uncorrelated sources and coherent sources coexist, a novel algorithm to direction of arrival (DOA) estimation for symmetric uniform linear array is presented. Under the condition of stationary colored noise field, the algorithm employs a spatial differencing method to eliminate the noise covariance matrix and uncorrelated sources, then a Toeplitz matrix is constructed for the remained coherent sources. After preprocessing, a propagator method (PM) is employed to find the DOAs without any eigendecomposition. The number of sources resolved by this approach can exceed the number of array elements at a lower computational complexity. Simulation results demonstrate the effectiveness and efficiency of the proposed method.
基金Hong Lai has been supported by the National Natural Science Foundation of China(No.61702427)the Chongqing innovation project(No.cx2018076)+1 种基金the Fundamental Research Funds for the Central Universities(XDJK2018C048)the financial support in part by the 1000-Plan of Chongqing by Southwest University(No.SWU116007)。
文摘On the one hand,existing measurement device independent quantum key distribution(MDI-QKD)protocols have usually adopted single photon source(SPS)and weak coherent photon(WCP),however,these protocols have suffered from multi-photon problem brought from photon splitter number attacks.On the other hand,the orbital angular momentum(OAM)-MDI-QKD protocol does not need to compare and adjust the reference frame,solving the dependency of the base in the MDI-QKD protocol.Given that,we propose the OAM-MDI-QKD protocol based on the parametric light sources which mainly include single-photon-added-coherent(SPACS)and heralded single-photon sources(HSPS).Due to the stability of OAM and the participation of parametric light sources,the performance of MDI-QKD protocol gradually approaches the ideal situation.Numerical simulation shows that compared with WCP scheme,HSPS and SPACS schemes have increased the maximum secure transmission distance by 30 km and 40 km respectively.
基金The National Natural Science Foundation of China(Grant No.62071165)the Fundamental Research Funds for the Central Universities of China(Grant No.JZ2021HGTB0074)the China Postdoctoral Science Foundation(Grant No.2021M690853).
文摘Virtual source(VS)imaging has been proposed to improve image resolution in medical ultrasound imaging.However,VS obtains a limited contrast due to the non-adaptive delay-and-sum(DAS)beamforming.To improve the image contrast and provide an enhanced resolution,adaptive weighting algorithms were applied in VS imaging.In this paper,we proposed an adjustable generalized coherence factor(aGCF)for the synthetic aperture sequential beamforming(SASB)ofVS imaging to improve image quality.The value of aGCF is adjusted by a sequence intensity factor(SIF)that is defined as the ratio between the effective low resolution scan lines(LRLs)intensity and total LRLs strength.The aGCF-weighted VS(aGCF-VS)images were compared with standard VS images and GCF-weighted VS(GCF-VS)images.Simulation and experimental results demonstrated that the contrast ratio(CR)and contrastto-noise ratio(CNR)of aGCF-VS are greatly improved,compared with standard VS imaging.And in comparison with GCF-VS,aGCF-VS can obtain better CNR and speckle signal-to-noise ratio(sSNR)whilemaintaining similar CR.Therefore,aGCF is suitable for VS imaging to improve contrast and preserve speckle pattern.
基金supported by the National Key R&D Program of China(2016YFF0102003 and 2016YFF0102000).
文摘In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a circulator,a coupler,and a tunable filter.In the structure,the lightpasses through the nonlinear medium(SOA)twice in two opposite directions,which excites thenonlinear ffect and increases the performance of the swept source.The tunable filter is based on apolygon rotating mirror and gratings.Traditionally,multiple SOAs are adopted to improve thesweep range and the optical power,which increases the cost and complexity of the swept source.The method proposed in this paper can improve the spectral range and optical power of the sweptsources without additional accessories.For the short-cavity swept source,the power increasesfrom 6 mW to 7.7 mW,and the sweep range increases from 98 nm to 120 nm.The broadband swept sources could have wide applications in biomedical imaging,sensor system,measurementand so on.
文摘Coherent diffraction radiation (CDR), generated by relativistic femtosecond electron bunches passing through an aperture in a metallic foil, is becoming widely used as a high brightness, coherent, polarized, and broad- band terahertz radiation source. It is one of the most promising technique for non-destructive beam diagnostics in ac- celerators. In this paper, how to produce CDR is studied by utilizing femtosecond electron bunches at wavelengths equal to or longer than the bunch length with the aperture size at the condition of a≤γλ/(2π), which is provided by Shanghai Deep Ultraviolet-Free Electron Laser (SDUV-FEL) facility. General characteristics of CDR at SDUV-FEL are analyzed and numerically calculated. The results show that the radiance of this radiation within the frequency range from 0.2 up to 5 terahertz greatly exceeds that available from conventional black body radiation or synchrotron radiation.
基金Supported by the National Natural Science Foundation of China (Grant No. 60772146)the Program for New Century Excellent Talents in University (Grant No. NCET-05-0806)
文摘The existing directions-of-arrival (DOAs) estimation methods for two-dimensional (2D) coherently distributed sources need one- or two-dimensional search, and the computational complexities of them are high. In addition, most of them are designed for special angular signal distribution functions. As a result, their performances will degenerate when deal with different sources with different angular signal distribution functions or unknown angular signal distribution functions. In this paper, a low-complexity decoupled DOAs estimation method without searching using two parallel uniform linear arrays (ULAs) is proposed for coherently distributed sources, as well as a novel parameter matching method. It can resolve the problems mentioned above efficiently. Simulation results validate the effectiveness of our approach.
基金This work was partly supported by the German Federal Ministry of Education and Research(BMBF)the European Research Council under the European Union’s Seventh Framework Programme(FP7/2007-2013)/ERC Grant Agreement No.240460Arno Klenke and Jan Rothhardt acknowledge financial support by the Helmholtz-Institute Jena.
文摘The process of high harmonic generation(HHG)enables the development of table-top sources of coherent extreme ultraviolet(XUV)light.Although these are now matured sources,they still mostly rely on bulk laser technology that limits the attainable repetition rate to the low kilohertz regime.Moreover,many of the emerging applications of such light sources(e.g.,photoelectron spectroscopy and microscopy,coherent diffractive imaging,or frequency metrology in the XUV spectral region)require an increase in the repetition rate.Ideally,these sources are operated with a multi-MHz repetition rate and deliver a high photon flux simultaneously.So far,this regime has been solely addressed using passive enhancement cavities together with low energy and high repetition rate lasers.Here,a novel route with significantly reduced complexity(omitting the requirement of an external actively stabilized resonator)is demonstrated that achieves the previously mentioned demanding parameters.A krypton-filled Kagome photonic crystal fiber is used for efficient nonlinear compression of 9 μJ,250 fs pulses leading to,7 μJ,31 fs pulses at 10.7 MHz repetition rate.The compressed pulses are used for HHG in a gas jet.Particular attention is devoted to achieving phase-matched(transiently)generation yielding.10^(13) photons s^(-1)(.50 μW)at 27.7 eV.This new spatially coherent XUV source improved the photon flux by four orders of magnitude for direct multi-MHZ experiments,thus demonstrating the considerable potential of this source.
基金supported by the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,ShanghaiBranchNational Natural Science Foundation of China(Nos.12104471,U226720057,and 62105346)+3 种基金Key Research Program of Frontier Sciences,Chinese Academy of SciencesYouth Innovation Promotion Association of Chinese Academy of SciencesCAS Project for Young Scientists in Basic Research(No.YSBRO60)Shanghai Sailing Program(No.21YF1453900).
文摘Free-electron light sources feature extraordinary luminosity,directionality,and coherence,which has enabled significant scientific progress in fields including physics,chemistry,and biology.The next generation of light sources has aimed at compact radiation sources driven by free electrons,with the advantages of reduction in both space and cost.With the rapid development of ultra-intense and ultrashort lasers,great effort has been devoted to the quest for compact free-electron lasers(FELs).This review focuses on the current efforts and advancements in the development of compact FELs,with a particular emphasis on two notable paths:the development of compact accelerators and the construction of micro undulators based on innovative materials/structures or optical modulation of electrons.In addition,the physical essence of inverse Compton scattering is discussed,which offers remarkable capability to develop an optical undulator with a spatial period that matches the optical wavelength.Recent scientific developments and future directions for miniaturized and integrated free-electron coherent light sources are also reviewed.In the future,the prospect of generating ultrashort electron pulses will provide fascinating means of producing superradiant radiation,promising high brilliance and coherence even on a micro scale using optical micro undulators.
基金Supported by National Natural Science Foundation of China (10575024)
文摘We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source, using quantum probability amplitudes in a path-integral formalism. The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering theory. Two-pion interferometry with effects of the multiple scattering and source collective expansion is examined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically. We do not find observable effect of either the multiple scattering or the source collective expansion on HBT chaotic parameter.
文摘The basic principles of the partial and multiple coherence ananlysis and their utilization on vibration source identification are discussed in detail in this paper. The partial coherence analysis is the effective method of vibration source identification in multiple input single output systems.Formerly, there was not any this kind of function in the signal processor, and there was not any special software too. The software which we developed and used in the 7T 17S signal processor has this function. This software can be used not only for the partial and multiple coherence analysis of signal, but also for the correlation analysis, power spectrum analysis, transfer function analysis et al.We used this software to make the identifcation of the vibration source of the car floor board of electrical measuring vehicle, and to find the main factors which effect the vibration of the car board.The excellent result was obtained. This method can also be used for making the identifications of noise source and other sources.