In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condi...In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.展开更多
This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direc...This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone.展开更多
redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex sep...redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex separable programming problems.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 10671010, 70841008)
文摘In this paper, we establish a theoretical framework of path-following interior point al- gorithms for the linear complementarity problems over symmetric cones (SCLCP) with the Cartesian P*(κ)-property, a weaker condition than the monotonicity. Based on the Nesterov-Todd, xy and yx directions employed as commutative search directions for semidefinite programming, we extend the variants of the short-, semilong-, and long-step path-following algorithms for symmetric conic linear programming proposed by Schmieta and Alizadeh to the Cartesian P*(κ)-SCLCP, and particularly show the global convergence and the iteration complexities of the proposed algorithms.
基金the National Natural Science Foundation of China(No.11471102)the Key Basic Research Foundation of the Higher Education Institutions of Henan Province(No.16A110012)。
文摘This paper presents a class of primal-dual path-following interior-point algorithms for symmetric cone programming(SCP)based on wide neighborhoods and new directions with a parameterθ.When the parameterθ=1,the direction is exactly the classical Newton direction.When the parameterθis independent of the rank of the associated Euclidean Jordan algebra,the algorithm terminates in at most O(κr logε−1)iterations,which coincides with the best known iteration bound for the classical wide neighborhood algorithms.When the parameterθ=√n/βτand Nesterov–Todd search direction is used,the algorithm has O(√r logε−1)iteration complexity,the best iteration complexity obtained so far by any interior-point method for solving SCP.To our knowledge,this is the first time that a class of interior-point algorithms including the classical wide neighborhood path-following algorithm is proposed and analyzed over symmetric cone.
文摘redictor-corrector algorithm for linear programming, proposed by Mizuno et al. [1], becomes the best-known in the interior point methods. In this paper it is modified and then extended to solving a class of convex separable programming problems.