AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary ne...AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.展开更多
Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,...Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Metal–dielectric nanostructures in the optical anapole modes are essential for light–matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal–dielectric nanoantenna c...Metal–dielectric nanostructures in the optical anapole modes are essential for light–matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal–dielectric nanoantenna composed of six wedgeshaped gold(Au) nanoblocks as well as silica(SiO2) and silicon(Si) nanodiscs is designed and analyzed by the finite element method(FEM). The nanoantenna exhibits flexibility in excitation and manipulation of the anapole mode through the strong coupling between the metal and dielectrics, consequently improving the near-field enhancement at the gap. By systematically optimizing the structural parameters, the electric field enhancement factors at wavelengths corresponding to the anapole modes(AM1 and AM2) can be increased to 518 and 1482, respectively. Moreover, the nanoantenna delivers great performance in optical sensing such as a sensitivity of 550 nm/RIU. The results provide guidance and insights into enhancing the coupling between metals and dielectrics for applications such as surface-enhanced Raman scattering and optical sensing.展开更多
Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise supp...Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry;on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable40Ca+optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.展开更多
We theoretically investigate the optical absorption coefficient(OAC)in asymmetrical Gaussian potential quantum dots subject to an applied electric field.Confined wave functions together with energies of electron energ...We theoretically investigate the optical absorption coefficient(OAC)in asymmetrical Gaussian potential quantum dots subject to an applied electric field.Confined wave functions together with energies of electron energies in an effective mass approximation framework are obtained.The OAC is expressed according to the iterative method and the compact-density-matrix approach.Based on our results,OAC is sensitively dependent on external electric field together with the incident optical intensity.Additionally,peak shifts into greater energy as the quantum dot radius decrease.Moreover,the parameters of Gaussian potential have a significant influence on the OAC.展开更多
In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linew...In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.展开更多
In this review we consider the development of optical near-field imaging and nanostructuring by means of laser ablation since its early stages around the turn of the century.The interaction of short,intense laser puls...In this review we consider the development of optical near-field imaging and nanostructuring by means of laser ablation since its early stages around the turn of the century.The interaction of short,intense laser pulses with nanoparticles on a surface leads to laterally tightly confined,strongly enhanced electromagnetic fields below and around the nano-objects,which can easily give rise to nanoablation.This effect can be exploited for structuring substrate surfaces on a length scale well below the diffraction limit,one to two orders smaller than the incident laser wavelength.We report on structure formation by the optical near field of both dielectric and metallic nano-objects,the latter allowing even stronger and more localized enhancement of the electromagnetic field due to the excitation of plasmon modes.Structuring with this method enables one to nanopattern large areas in a one-step parallel process with just one laser pulse irradiation,and in the course of time various improvements have been added to this technique,so that also more complex and even arbitrary structures can be produced by means of nanoablation.The near-field patterns generated on the surface can be read out with high resolution techniques like scanning electron microscopy and atomic force microscopy and provide thus a valuable tool-in conjunction with numerical calculations like finite difference time domain(FDTD)simulations-for a deeper understanding of the optical and plasmonic properties of nanostructures and their applications.展开更多
ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the A1 nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured...ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the A1 nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration orAl NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of AI NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, AI NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors.展开更多
The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dip...The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.展开更多
Self-accelerating beams have the unusual ability to remain diffraction-free while undergo the transverse shift during the free-space propagation.We theoretically identify that the transverse optical field distribution...Self-accelerating beams have the unusual ability to remain diffraction-free while undergo the transverse shift during the free-space propagation.We theoretically identify that the transverse optical field distribution of 2D self-accelerating beam is determined by the selection of the transverse Cartesian coordinates,when the caustic method is utilized for its trajectory design.Based on the coordinate-rotation method,we experimentally demonstrate a scheme to flexibly manipulate the rotation of transverse optical field for 2D self-accelerating beams under the condition of a designated trajectory.With this scheme,the transverse optical field can be rotated within a range of 90 degrees,especially when the trajectory of 2D self-accelerating beams needs to be maintained for free-space photonic interconnection.展开更多
As a natural mathematical form,a catenary is the curve that a hanging chain or cable adopts under its own weight when supported at its ends in a homogeneous gravitational field.This unique shape arises from the balanc...As a natural mathematical form,a catenary is the curve that a hanging chain or cable adopts under its own weight when supported at its ends in a homogeneous gravitational field.This unique shape arises from the balance of forces acting on each segment of the chain,resulting in a curve described by hyperbolic cosine functions.Catenary functions play pivotal roles in describing the electromagnetic field,intensity distribution,and dispersion of structured light on the sub-wavelength scale^(1).展开更多
The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with ...The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific educa...The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.展开更多
Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field ...Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.展开更多
Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Car...Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.展开更多
The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nanocrystal embedded glasses, while controlling the size distribution and content of nano-crystals in the glass ac...The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nanocrystal embedded glasses, while controlling the size distribution and content of nano-crystals in the glass accurately is a key to obtain good quality. The auxiliary direct current electric field, accompanied with heat treatment, was applied on AgCI containing niobic tellurite glass sheet. The nucleation and crystallization of the glass were well controlled under auxiliary electric field. It was found that the average size of AgCI nano-crystal particles in the glass is smaller than that under single heat treatment, and the content of nano- crystals is higher. Therefore the third-order nonlinear optical performance of the glass was increased a lot. The local-area distributed AgCl nano-crystal particles can also be embedded into a glass sheet by using locally applied electric field.展开更多
An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the...An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.展开更多
Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica...Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.When the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.展开更多
文摘AIM:To evaluate the predictive value of superficial retinal capillary plexus(SRCP)and radial peripapillary capillary(RPC)for visual field recovery after optic cross decompression and compare them with peripapillary nerve fiber layer(pRNFL)and ganglion cell complex(GCC).METHODS:This prospective longitudinal observational study included patients with chiasmal compression due to sellar region mass scheduled for decompressive surgery.Generalized estimating equations were used to compare retinal vessel density and retinal layer thickness preand post-operatively and with healthy controls.Logistic regression models were used to assess the relationship between preoperative GCC,pRNFL,SRCP,and RPC parameters and visual field recovery after surgery.RESULTS:The study included 43 eyes of 24 patients and 48 eyes of 24 healthy controls.Preoperative RPC and SRCP vessel density and pRNFL and GCC thickness were lower than healthy controls and higher than postoperative values.The best predictive GCC and pRNFL models were based on the superior GCC[area under the curve(AUC)=0.866]and the tempo-inferior pRNFL(AUC=0.824),and the best predictive SRCP and RPC models were based on the nasal SRCP(AUC=0.718)and tempo-inferior RPC(AUC=0.825).There was no statistical difference in the predictive value of the superior GCC,tempo-inferior pRNFL,and tempo-inferior RPC(all P>0.05).CONCLUSION:Compression of the optic chiasm by tumors in the saddle area can reduce retinal thickness and blood perfusion.This reduction persists despite the recovery of the visual field after decompression surgery.GCC,pRNFL,and RPC can be used as sensitive predictors of visual field recovery after decompression surgery.
基金supported by the National Natural Science Foundation of China(Grant Nos.62175156,81827807,81770940)Science and Technology Commission of Shanghai Municipality(22S31903000,16DZ0501100)Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27).
文摘Diabetic retinopathy(DR)is one of the major causes of visual impairment in adults with diabetes.Optical coherence tomography angiography(OCTA)is nowadays widely used as the golden criterion for diagnosing DR.Recently,wide-field OCTA(WF-OCTA)provided more abundant information including that of the peripheral retinal degenerative changes and it can contribute in accurately diagnosing DR.The need for an automatic DR diagnostic system based on WF-OCTA pictures attracts more and more attention due to the large diabetic population and the prevalence of retinopathy cases.In this study,automatic diagnosis of DR using vision transformer was performed using WF-OCTA images(12 mm×12 mm single-scan)centered on the fovea as the dataset.WF-OCTA images were automatically classified into four classes:No DR,mild nonproliferative diabetic retinopathy(NPDR),moderate to severe NPDR,and proliferative diabetic retinopathy(PDR).The proposed method for detecting DR on the test set achieves accuracy of 99.55%,sensitivity of 99.49%,and specificity of 99.57%.The accuracy of the method for DR staging reaches up to 99.20%,which has been proven to be higher than that attained by classical convolutional neural network models.Results show that the automatic diagnosis of DR based on vision transformer and WF-OCTA pictures is more effective for detecting and staging DR.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
基金Project supported by the Outstanding young and middleaged research and innovation team of Northeast Petroleum University (Grant No. KYCXTD201801)the Natural Science Foundation Projects of Heilongjiang Province of China (Grant No. LH2021F007)+3 种基金the China Postdoctoral Science Foundation (Grant No. 2020M670881)the Study Abroad returnees merit-based Aid Foundation of Heilongjiang Province of China (Grant No. 070-719900103)the Northeastern University scientific research projects (Grant No. 2019KQ74)the City University of Hong Kong Donation Research (Grant Nos. 9220061 and DON-RMG 9229021),and the City University of Hong Kong Strategic Research (Grant No. SRG 7005505)。
文摘Metal–dielectric nanostructures in the optical anapole modes are essential for light–matter interactions due to the low material loss and high near-field enhancement. Herein, a hybrid metal–dielectric nanoantenna composed of six wedgeshaped gold(Au) nanoblocks as well as silica(SiO2) and silicon(Si) nanodiscs is designed and analyzed by the finite element method(FEM). The nanoantenna exhibits flexibility in excitation and manipulation of the anapole mode through the strong coupling between the metal and dielectrics, consequently improving the near-field enhancement at the gap. By systematically optimizing the structural parameters, the electric field enhancement factors at wavelengths corresponding to the anapole modes(AM1 and AM2) can be increased to 518 and 1482, respectively. Moreover, the nanoantenna delivers great performance in optical sensing such as a sensitivity of 550 nm/RIU. The results provide guidance and insights into enhancing the coupling between metals and dielectrics for applications such as surface-enhanced Raman scattering and optical sensing.
基金supported by the National Key R&D Program of China (Grant Nos.2022YFB3904001, 2022YFB3904004, and 2018YFA0307500)the National Natural Science Foundation of China (Grant Nos. 12022414 and 12121004)+3 种基金the CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and Y2022099)the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013)the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-055)the Interdisciplinary Cultivation Project of the Innovation Academy for Precision Measurement of Science and Technology (Grant No. S21S2201)。
文摘Future applications of portable40Ca^(+)optical clocks require reliable magnetic field stabilization to improve frequency stability, which can be achieved by implementing an active and passive magnetic field noise suppression system. On the one hand, we have optimized the magnetic shielding performance of the portable optical clock by reducing its apertures and optimizing its geometry;on the other hand, we have introduced an active magnetic field noise suppression system to further suppress the magnetic field noise experienced by the ions. These efforts reduced the ambient magnetic field noise by about 10000 times, significantly reduced the linewidth of the clock transition spectrum, improved the stability of the portable40Ca+optical clock, and created the conditions for using portable optical clocks in non-laboratory magnetic field environments. This active magnetic field suppression scheme has the advantages of simple installation and wide applicability.
基金the National Natural Science Foundation of China(Grant Nos.51702003,61775087,and 11674312)the Provincial Foundation for Excellent Top Talents of Colleges and Universities of Anhui Province of China(Grant No.gxgwfx2019016)+1 种基金the Anhui Provincial Natural Science Foundation,China(Grant Nos.1808085ME130 and 1508085QF140)University Outstanding Young Talents Support Program Fund(Grant No.gxyqZD2018039)。
文摘We theoretically investigate the optical absorption coefficient(OAC)in asymmetrical Gaussian potential quantum dots subject to an applied electric field.Confined wave functions together with energies of electron energies in an effective mass approximation framework are obtained.The OAC is expressed according to the iterative method and the compact-density-matrix approach.Based on our results,OAC is sensitively dependent on external electric field together with the incident optical intensity.Additionally,peak shifts into greater energy as the quantum dot radius decrease.Moreover,the parameters of Gaussian potential have a significant influence on the OAC.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20113001)
文摘In theory, we study the quantum tluctuatlons ot tlae suDllarmonlc renecteu nela Irom a ulplc-rc^ulltUtt IdU^ClIClatC optical parametric amplifier (OPA) inside an optical cavity. We discuss two cases, where the linewidth of the harmonic field is either much narrower or broader than the subharmonic field. Since an electromagnetically-induced-transparency (EIT)-like effect can be simulated in a triple-resonant OPA, the output spectra from a triple-resonant OPA with a squeezed vacuum input may simulate the phenomenon of the response of an EIT medium for squeezed states. This scheme can be implemented with present experimental setups.
文摘In this review we consider the development of optical near-field imaging and nanostructuring by means of laser ablation since its early stages around the turn of the century.The interaction of short,intense laser pulses with nanoparticles on a surface leads to laterally tightly confined,strongly enhanced electromagnetic fields below and around the nano-objects,which can easily give rise to nanoablation.This effect can be exploited for structuring substrate surfaces on a length scale well below the diffraction limit,one to two orders smaller than the incident laser wavelength.We report on structure formation by the optical near field of both dielectric and metallic nano-objects,the latter allowing even stronger and more localized enhancement of the electromagnetic field due to the excitation of plasmon modes.Structuring with this method enables one to nanopattern large areas in a one-step parallel process with just one laser pulse irradiation,and in the course of time various improvements have been added to this technique,so that also more complex and even arbitrary structures can be produced by means of nanoablation.The near-field patterns generated on the surface can be read out with high resolution techniques like scanning electron microscopy and atomic force microscopy and provide thus a valuable tool-in conjunction with numerical calculations like finite difference time domain(FDTD)simulations-for a deeper understanding of the optical and plasmonic properties of nanostructures and their applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the A1 nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration orAl NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of AI NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, AI NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(Grant Nos.11274104 and 11404108)
文摘The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1.
基金supports from National Key R&D Program of China(Grant No.2018YFB1801001)the National Natural Science Foundation of China(Grant No.61875061)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams.
文摘Self-accelerating beams have the unusual ability to remain diffraction-free while undergo the transverse shift during the free-space propagation.We theoretically identify that the transverse optical field distribution of 2D self-accelerating beam is determined by the selection of the transverse Cartesian coordinates,when the caustic method is utilized for its trajectory design.Based on the coordinate-rotation method,we experimentally demonstrate a scheme to flexibly manipulate the rotation of transverse optical field for 2D self-accelerating beams under the condition of a designated trajectory.With this scheme,the transverse optical field can be rotated within a range of 90 degrees,especially when the trajectory of 2D self-accelerating beams needs to be maintained for free-space photonic interconnection.
文摘As a natural mathematical form,a catenary is the curve that a hanging chain or cable adopts under its own weight when supported at its ends in a homogeneous gravitational field.This unique shape arises from the balance of forces acting on each segment of the chain,resulting in a curve described by hyperbolic cosine functions.Catenary functions play pivotal roles in describing the electromagnetic field,intensity distribution,and dispersion of structured light on the sub-wavelength scale^(1).
基金supported by the National Key R&D Program of China(Grant Nos.2021YFB3202800 and 2023YF0718400)Chinese Academy of Sciences(Grant No.ZDZBGCH2021002)+2 种基金Chinese Academy of Sciences(Grant No.GJJSTD20200001)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303204)Anhui Initiative in Quantum Information Technologies,USTC Tang Scholar,and the Fundamental Research Funds for the Central Universities.
文摘The application of the vector magnetometry based on nitrogen-vacancy(NV)ensembles has been widely investigatedin multiple areas.It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatialresolution.However,a bias magnetic field is necessary to fully separate the resonance lines of optically detected magneticresonance(ODMR)spectrum of NV ensembles.This brings disturbances in samples being detected and limits the rangeof application.Here,we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles.By utilizing the anisotropy property of fluorescence excited from NV centers,we analyzed the ODMR spectrum of NVensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical modeland reconstructed the magnetic field vector.The minimum magnetic field modulus that can be resolved accurately is downto~0.64 G theoretically depending on the ODMR spectral line width(1.8 MHz),and~2 G experimentally due to noisesin fluorescence signals and errors in calibration.By using 13C purified and low nitrogen concentration diamond combinedwith improving calibration of unknown parameters,the ODMR spectral line width can be further decreased below 0.5 MHz,corresponding to~0.18 G minimum resolvable magnetic field modulus.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金supported by the Shanghai Municipal People’s Government
文摘The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347127,61404044,and 11347111)
文摘Based on the tight binding model, we investigate the low energy bandstructures, edge states, and optical absorptions for the silicene nanoribbons (SiNRs) with different terminations under an in-plane exchange field and/or a perpendicular electric field. We find that the zigzag SiNRs are gapped by the exchange field, but they could reenter the metallic state after the application of the electric field. Contrarily, a certain kind of armchair SiNRs remain gapless even if a weak exchange field is present. Furthermore, the combination of the exchange and electric fields could effectively modulate the penetration length and the components of the edge states in the SiNRs. The corresponding optical conductivities for the SiNRs are also calculated, which show remarkable dependence on the edge types of the SiNRs and the two external fields.
基金supported by the National Natural Science Foundation of China(Grant Nos.61308071,61601355,and 61571355)the Natural Science Foundation of Shaanxi Province,China(Grant No.2016JM6011)
文摘Based on the practical situation of nondestructive examination, the calculation model of the composite scattering is established by using a three-dimensional half-space finite difference time domain, and the Monte Carlo method is used to solve the problem of the optical surface with roughness in the proposed scheme. Moreover, the defect particles are observed as periodic particles for a more complex situation. In order to obtain the scattering contribution of defects inside the optical surface, a difference radar cross section is added into the model to analyze the selected calculations on the effects of numbers, separation distances, different depths and different materials of defects. The effects of different incident angles are also discussed. The numerical results are analyzed in detail to demonstrate the best position to find the defects in the optical surface by detecting in steps of a fixed degree for the incident angle.
基金supported by the National Nature Science Foundation of China (Grant No.50572069)the Shanghai Science and Technology Committee (Grant Nos.0652nm002 and 0852nm06500).
文摘The quantum effect of nano-crystals is an important factor to improve nonlinear optical performance of nanocrystal embedded glasses, while controlling the size distribution and content of nano-crystals in the glass accurately is a key to obtain good quality. The auxiliary direct current electric field, accompanied with heat treatment, was applied on AgCI containing niobic tellurite glass sheet. The nucleation and crystallization of the glass were well controlled under auxiliary electric field. It was found that the average size of AgCI nano-crystal particles in the glass is smaller than that under single heat treatment, and the content of nano- crystals is higher. Therefore the third-order nonlinear optical performance of the glass was increased a lot. The local-area distributed AgCl nano-crystal particles can also be embedded into a glass sheet by using locally applied electric field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Science Foundation from the Education Department of Hunan Province,China (Grant No. 10A100)
文摘An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Hunan Provincial Education Department Funded Project,China (Grant No. 10A100)
文摘Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.When the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.