An S-band wideband chirp generator using specially designed fast lock phase lock loop(FL-PLL) was demonstrated.To realize high linearity,structure of direct digital synthesizer(DDS) plus FL-PLL was used.DDS gives ...An S-band wideband chirp generator using specially designed fast lock phase lock loop(FL-PLL) was demonstrated.To realize high linearity,structure of direct digital synthesizer(DDS) plus FL-PLL was used.DDS gives ideal linearity while FL-PLL retains the linearity and provides radio frequency.The system block diagrams were showed and the timing relationships of the components were provided.Two important considerations of the system,wideband loop and wideband voltage control oscillator(VCO),were discussed;meanwhile,after analyzing the considerations,corresponding solutions were presented.Measurement results show that the generated 2560MHz to 2960MHz chirp reaches a high FM linearity of 0.003%.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
Chirp超宽带具有峰值平均功率比(peak to average power ratio,PAPR)接近为1、测距定位能力强等优势,能够有效解决传统的超宽带技术存在的PAPR过大、传输距离短等问题,设计并产生Chirp超宽带信号是实现该通信系统的关键技术之一。提出...Chirp超宽带具有峰值平均功率比(peak to average power ratio,PAPR)接近为1、测距定位能力强等优势,能够有效解决传统的超宽带技术存在的PAPR过大、传输距离短等问题,设计并产生Chirp超宽带信号是实现该通信系统的关键技术之一。提出了一种高性能Chirp超宽带信号源方案,通过采用现场可编程门阵列(field-programma-ble gate array,FPGA)控制直接数字频率合成(direct digital synthesis,DDS)芯片AD9956产生低频Chirp信号,并结合锁相环(phase locked loop,PLL)技术实现带宽扩展,从而获得Chirp超宽带信号。实验表明,所设计的Chirp超宽带信号源具有结构简单、可编程、可扩展、性能好及实用性强等优点。展开更多
基金Supported by the Fund of National Defense Industry Innovative Team (231)
文摘An S-band wideband chirp generator using specially designed fast lock phase lock loop(FL-PLL) was demonstrated.To realize high linearity,structure of direct digital synthesizer(DDS) plus FL-PLL was used.DDS gives ideal linearity while FL-PLL retains the linearity and provides radio frequency.The system block diagrams were showed and the timing relationships of the components were provided.Two important considerations of the system,wideband loop and wideband voltage control oscillator(VCO),were discussed;meanwhile,after analyzing the considerations,corresponding solutions were presented.Measurement results show that the generated 2560MHz to 2960MHz chirp reaches a high FM linearity of 0.003%.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
文摘Chirp超宽带具有峰值平均功率比(peak to average power ratio,PAPR)接近为1、测距定位能力强等优势,能够有效解决传统的超宽带技术存在的PAPR过大、传输距离短等问题,设计并产生Chirp超宽带信号是实现该通信系统的关键技术之一。提出了一种高性能Chirp超宽带信号源方案,通过采用现场可编程门阵列(field-programma-ble gate array,FPGA)控制直接数字频率合成(direct digital synthesis,DDS)芯片AD9956产生低频Chirp信号,并结合锁相环(phase locked loop,PLL)技术实现带宽扩展,从而获得Chirp超宽带信号。实验表明,所设计的Chirp超宽带信号源具有结构简单、可编程、可扩展、性能好及实用性强等优点。