The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-prod...The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.展开更多
文摘The biological hydrogen generating from fermentation of low-cost lignocellulosic feedstocks by hydrogen-producing bacteria has attracted many attentions in recent years. In the present investigation, ten hydrogen-producing bacteria were newly isolated from the intestine of wild common carp (</span><span style="font-family:Verdana;"><i>Cyprinus carpio</i></span><span style="font-family:Verdana;"> L.), and identified belonging to the genera of </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Klebsiella</span></i><span style="font-family:Verdana;"> based on analysis of the 16S rDNA gene sequence and examination of the physiological and biochemical characteristics. All the isolates inherently owned the ability to metabolize xylose especially the cotton stalk hydrolysate for hydrogen production with hydrogen yield (HY) higher than 100 mL</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span><span></span><span></span><span style="font-family:""><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">. In particular, two isolates, WL1306 and WL1305 obtained higher HY, hydrogen production rate (HPR), and hydrogen production potential (HPP) using cotton stalk hydrolysate as sugar substrate than the mixed sugar of glucose & xylose, which obtained the HY of 249.5 ± 29.0, 397.0 ± 36.7 mL</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPR of 10.4 ± 1.2, 16.5 ± 1.5 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, HPP of 19.5 ± 2.3, 31.0 ± 2.8 mL</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">L</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">g</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><sub><span style="font-family:Verdana;">sugar</span></sub><span style="font-family:Verdana;">, separately. The generation of soluble metabolites, such as the lactate, formate, acetate, succinate and ethanol reflected the mixed acid fermentation properties of the hydrogen production pathway.