Wild birds of the orders Anseriformes and Charadriiformes represent a natural reservoir of low pathogenic avian influenza(LPAI) viruses(family Orthomyxoviridae).Wild geese(order Anseriformes)relating to waterfowls und...Wild birds of the orders Anseriformes and Charadriiformes represent a natural reservoir of low pathogenic avian influenza(LPAI) viruses(family Orthomyxoviridae).Wild geese(order Anseriformes)relating to waterfowls undertake extensive migration flights reaching thousands of kilometers.Isolation of the avian influenza virus(AIV) from wild geese is quite low or absent.The aims of this study are to monitor the AIV in different wild goose species,nesting on Russian territory and the Tibet Plateau and to analyze the derived data for the purpose of determining the role of these wild bird species in spreading pathogens.In our study 3245 samples from nine wild goose species in nine regions of Russia and on the territory of the Tibet Plateau(the Xizang Autonomous Region) were tested and no AIV were detected.Our study shows the non-essential role of wild geese in the spread of the AIV over long distances and reaches theconclusion that geese are probably not natural reservoirs for the primary viruses.However,further inquiry of AIV in wild goose populations is required.Studies of wild geese and AIV ecology will allow us to obtainmore information about pathogen-host relationships and to make arrangements for the maintenance ofwild goose populations.展开更多
Objective In March 2012, an H7N7 subtype avian influenza virus (AIV) named A/wild goose/Dongting/PC0360/2022 (H7N7) (DT/PC0360) was recovered from a wild goose in East Dongting Lake. We performed whole-genome se...Objective In March 2012, an H7N7 subtype avian influenza virus (AIV) named A/wild goose/Dongting/PC0360/2022 (H7N7) (DT/PC0360) was recovered from a wild goose in East Dongting Lake. We performed whole-genome sequencing of the isolate, and analyzed the phylogenetic and molecular characterization. Methods RNA was extracted from environment samples (including fecal samples from wild bird or domestic ducks, and water samples) for detecting the presence of Influenza A Virus targeting Matrix gene, using realtime RT-PCR assay. The positive samples were performed virus isolation with embryonated eggs. The subtype of the isolates were identified by RT-PCR assay with the HI-HI6 and N1-N9 primer set. The whole-genome sequencing of isolates were performed. Phylogenetic and molecular characterizations of the eight genes of the isolates were analyzed. Results Our results suggested that all the eight gene segments of DT/PC0360 belonged to the Eurasian gene pool, and the HA gene were belonged to distinct sublineage with H7N9 AIV which caused outbreaks in China's Mainland in 2013. The hemagglutinin cleavage site of HA of DT/PC0360 showed characterization of low pathogenic avian influenza virus. Conclusion Strengthening the surveillance of AlVs of wild waterfowl and poultry in this region is vita for our knowledge of the ecology and mechanism of transmission to prevent an influenza pandemic.展开更多
基金supported by the Russian Government(Government Project#11.519.11.2014)the Bio Industry Initiative(BII) USA (ISTC#3436)
文摘Wild birds of the orders Anseriformes and Charadriiformes represent a natural reservoir of low pathogenic avian influenza(LPAI) viruses(family Orthomyxoviridae).Wild geese(order Anseriformes)relating to waterfowls undertake extensive migration flights reaching thousands of kilometers.Isolation of the avian influenza virus(AIV) from wild geese is quite low or absent.The aims of this study are to monitor the AIV in different wild goose species,nesting on Russian territory and the Tibet Plateau and to analyze the derived data for the purpose of determining the role of these wild bird species in spreading pathogens.In our study 3245 samples from nine wild goose species in nine regions of Russia and on the territory of the Tibet Plateau(the Xizang Autonomous Region) were tested and no AIV were detected.Our study shows the non-essential role of wild geese in the spread of the AIV over long distances and reaches theconclusion that geese are probably not natural reservoirs for the primary viruses.However,further inquiry of AIV in wild goose populations is required.Studies of wild geese and AIV ecology will allow us to obtainmore information about pathogen-host relationships and to make arrangements for the maintenance ofwild goose populations.
文摘Objective In March 2012, an H7N7 subtype avian influenza virus (AIV) named A/wild goose/Dongting/PC0360/2022 (H7N7) (DT/PC0360) was recovered from a wild goose in East Dongting Lake. We performed whole-genome sequencing of the isolate, and analyzed the phylogenetic and molecular characterization. Methods RNA was extracted from environment samples (including fecal samples from wild bird or domestic ducks, and water samples) for detecting the presence of Influenza A Virus targeting Matrix gene, using realtime RT-PCR assay. The positive samples were performed virus isolation with embryonated eggs. The subtype of the isolates were identified by RT-PCR assay with the HI-HI6 and N1-N9 primer set. The whole-genome sequencing of isolates were performed. Phylogenetic and molecular characterizations of the eight genes of the isolates were analyzed. Results Our results suggested that all the eight gene segments of DT/PC0360 belonged to the Eurasian gene pool, and the HA gene were belonged to distinct sublineage with H7N9 AIV which caused outbreaks in China's Mainland in 2013. The hemagglutinin cleavage site of HA of DT/PC0360 showed characterization of low pathogenic avian influenza virus. Conclusion Strengthening the surveillance of AlVs of wild waterfowl and poultry in this region is vita for our knowledge of the ecology and mechanism of transmission to prevent an influenza pandemic.