Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h...The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.展开更多
As China vigorously promotes the development of new energy,photovoltaic power curtailment and wind power curtailment have been effectively resolved.At the same time,the yield from new energy power generation is becomi...As China vigorously promotes the development of new energy,photovoltaic power curtailment and wind power curtailment have been effectively resolved.At the same time,the yield from new energy power generation is becoming an important factor that affects the scale of investment in new energy.This paper focuses on the weather risks faced by wind power producers.By studying current research on weather index insurance in China and abroad,the functions and design methods for weather index insurance have been clarified.In addition,the feasibility of wind-power generation index insurance is discussed.The calculation methods for wind power generation index and the weather index insurance pricing methods for wind power enterprises are proposed.A weather index insurance model for wind power generation was established.The rationality and feasibility of the weather index insurance model proposed in this paper were verified using data from an existing power plant.The simulation results show that wind power enterprises can effectively avoid economic losses caused by weather risks through weather index insurance.展开更多
In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and season...In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and seasonal variation. The first four modes can be obtained by EOF expansion of the zonally averaged WI. The first mode reveals the basic spatial distribution of the annually averaged WI. The second mode reflects the quasi-harmonic parts of the WI deviations. Tropical, subtropical and extratropical monsoon areas can be clearly reflected by this mode. The third mode reflects the non-harmonic parts of the WI deviations. It shows the so-called February reverse in stratospheric atmosphere as well as the asymmetric seasonal changes from spring to fall and from fall to spring due to both the land-sea distribution contrast between the Northern and Southern Hemispheres and the nonlinear effect of atmospheric and ocean fluids. The fourth mode reveals the northward advancing of the global reversed wind fields from spring to summer and their southward withdrawal from summer to autumn.展开更多
The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this ...The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective.展开更多
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
文摘The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy.
基金supported by the State Grid Science and Technology Project (Research on Transnational Energy Interaction Simulation and Deduction Technologies of Global Energy Interconnection, JS71-17-004)
文摘As China vigorously promotes the development of new energy,photovoltaic power curtailment and wind power curtailment have been effectively resolved.At the same time,the yield from new energy power generation is becoming an important factor that affects the scale of investment in new energy.This paper focuses on the weather risks faced by wind power producers.By studying current research on weather index insurance in China and abroad,the functions and design methods for weather index insurance have been clarified.In addition,the feasibility of wind-power generation index insurance is discussed.The calculation methods for wind power generation index and the weather index insurance pricing methods for wind power enterprises are proposed.A weather index insurance model for wind power generation was established.The rationality and feasibility of the weather index insurance model proposed in this paper were verified using data from an existing power plant.The simulation results show that wind power enterprises can effectively avoid economic losses caused by weather risks through weather index insurance.
文摘In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and seasonal variation. The first four modes can be obtained by EOF expansion of the zonally averaged WI. The first mode reveals the basic spatial distribution of the annually averaged WI. The second mode reflects the quasi-harmonic parts of the WI deviations. Tropical, subtropical and extratropical monsoon areas can be clearly reflected by this mode. The third mode reflects the non-harmonic parts of the WI deviations. It shows the so-called February reverse in stratospheric atmosphere as well as the asymmetric seasonal changes from spring to fall and from fall to spring due to both the land-sea distribution contrast between the Northern and Southern Hemispheres and the nonlinear effect of atmospheric and ocean fluids. The fourth mode reveals the northward advancing of the global reversed wind fields from spring to summer and their southward withdrawal from summer to autumn.
文摘The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective.