The mobile incoherent Doppler lidar (MIDL), which was jointly developed by State Key Laboratory of Severe Weather (LaSW) of the Chinese Academy of Meteorological Sciences (CAMS) and Ocean University of China, pr...The mobile incoherent Doppler lidar (MIDL), which was jointly developed by State Key Laboratory of Severe Weather (LaSW) of the Chinese Academy of Meteorological Sciences (CAMS) and Ocean University of China, provided meteorological services during the Olympic sailing events in Qingdao in 2008. In this study, two experiments were performed based on these measurements. First, the capabilities of MIDL detection of sea-surface winds were investigated by comparing its radial velocities with those from a sea buoy. MIDL radial velocity was almost consistent with sea-buoy data; both reflected the changes in wind with time. However, the MIDL data was 0.5 m s-1 lower on average than the sea-buoy data due to differences in detection principle, sample volume, sample interval, spatial and temporal resolution. Second, the wind fields during the Olympic sailing events were calculated using a four-dimensional variation data assimilation (4DVAR) algorithm and were evaluated by comparing them with data from a sea buoy. The results show that the calculations made with the 4DVAR wind retrieval method are able to simulate the fine retrieval of sea-surface wind data--the retrieved wind fields were consistent with those of sea-buoy data. Overall, the correlation coefficient of wind direction was 0.93, and the correlation coefficient of wind speed was 0.70. The distribution of retrieval wind fields was consistent with that of MIDL radial velocity; the root-mean-square error between them had an average of only 1.52 m s-1^.展开更多
A high-precision automatic state monitoring and abnormity alarm technique is proposed to solve the process improvement issues of fiber-optic coil winding and splicing. Industrial cameras are used to capture optical an...A high-precision automatic state monitoring and abnormity alarm technique is proposed to solve the process improvement issues of fiber-optic coil winding and splicing. Industrial cameras are used to capture optical and hot images during the assembly of optical components of a fiber-optic gyroscope. A line and contour analysis technique is used to detect abnormal winding. By analyzing the intensity distribution of transmitted light, the graph cut model and multivariate Gaussian mixture model are used to detect and segment the splicing defects. The practical applications indicate the correctness and accuracy of our vision-based technique.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40975014 and 40975013)
文摘The mobile incoherent Doppler lidar (MIDL), which was jointly developed by State Key Laboratory of Severe Weather (LaSW) of the Chinese Academy of Meteorological Sciences (CAMS) and Ocean University of China, provided meteorological services during the Olympic sailing events in Qingdao in 2008. In this study, two experiments were performed based on these measurements. First, the capabilities of MIDL detection of sea-surface winds were investigated by comparing its radial velocities with those from a sea buoy. MIDL radial velocity was almost consistent with sea-buoy data; both reflected the changes in wind with time. However, the MIDL data was 0.5 m s-1 lower on average than the sea-buoy data due to differences in detection principle, sample volume, sample interval, spatial and temporal resolution. Second, the wind fields during the Olympic sailing events were calculated using a four-dimensional variation data assimilation (4DVAR) algorithm and were evaluated by comparing them with data from a sea buoy. The results show that the calculations made with the 4DVAR wind retrieval method are able to simulate the fine retrieval of sea-surface wind data--the retrieved wind fields were consistent with those of sea-buoy data. Overall, the correlation coefficient of wind direction was 0.93, and the correlation coefficient of wind speed was 0.70. The distribution of retrieval wind fields was consistent with that of MIDL radial velocity; the root-mean-square error between them had an average of only 1.52 m s-1^.
基金supported by the National "973" Program of China under Grant Nos.613186 and 2011CB711000
文摘A high-precision automatic state monitoring and abnormity alarm technique is proposed to solve the process improvement issues of fiber-optic coil winding and splicing. Industrial cameras are used to capture optical and hot images during the assembly of optical components of a fiber-optic gyroscope. A line and contour analysis technique is used to detect abnormal winding. By analyzing the intensity distribution of transmitted light, the graph cut model and multivariate Gaussian mixture model are used to detect and segment the splicing defects. The practical applications indicate the correctness and accuracy of our vision-based technique.