Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind ef...Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind effects on a long-span steel roof structure during the passage of Typhoon Fanapi. Some fi eld data, including wind speed and direction, acceleration responses, etc., were continuously and simultaneously recorded during the passage of the typhoon. Comprehensive analysis of the measured data is conducted to evaluate the typhoon-generated wind characteristics and its effects on a long-span steel roof. The fi rst four natural frequencies and their vibration mode shapes of the Guangzhou International Sports Arena(GISA) roof are evaluated by the stochastic subspace identifi cation(SSI) method and comparisons with those from fi nite element(FE) analysis are made. Meanwhile, damping ratios of the roof are also identifi ed by the SSI method and compared with those identifi ed by the random decrement method; the amplitude-dependent damping behaviors are also discussed. The fullscale measurement results are further compared with the corresponding wind tunnel test results to evaluate its reliability. The results obtained from this study are valuable for academic and professional engineers involved in the design of large-span roof structures.展开更多
This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using ...This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.展开更多
Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings signific...Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.展开更多
Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been ...Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been the field of silviculture, but increasing recognition of the importance and complexity of the subject has recently got people involved from many other disciplines. Due to the global climate changes, it is believed that the risk of further and stronger storms is increasing. In order to better understand the effects of wind on individual trees, forest stand and forest ecosystem, and further to practice the management of forests, it is necessary to summarize the research results related to this subject. This review was mostly based on the references from recent researches in the field, especially from the symposium volumes of some international conferences on this subject. The results indicated that there have been significant progresses in the following aspects: 1) the aerodynamic interaction between wind and trees, 2) the mechanics of trees under wind loading and adaptive growth, 3) the tree's physiological responses to wind, and 4) the risk assessment of wind damage to forest. However, there are some aspects which may need further studies: 1) wind damage to natural forests, 2) wind-driven gap formation and forest dynamics, 3) the effects of changes resulted from wind disturbances on ecological processes of forest ecosystem, and 4) management for the wind-damaged forests. Key words Wind - Wind effect - Trees/forest - Forest ecology - Disturbance CLC number S718 Document code B Foundation item: This research was supported by “the 100-Young-Researcher Project” of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).Biography: ZHU Jiao-jun (1965-), male, Ph. Doctor, Professor of Institute of Applied Ecology, Chinese Academy of Sciences, Professor of Graduate School of Chinese Academy of Sciences. China. Scholar researcher of Faculty of Agriculture, Niigata University, JapanResponsible editor: Song Funan展开更多
A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation...A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.展开更多
Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings ...Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.展开更多
To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer (ASCAT) data and buoy data of the National Data Buoy Center (NDBC) are...To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer (ASCAT) data and buoy data of the National Data Buoy Center (NDBC) are collocated. Buoy wind speed is converted into neutral wind at 10 m height. Then, ASCAT data are com- pared with the buoy data for the wind speed and direction. Subsequently, the errors between the ASCAT and the buoy wind as a function of each wave parameter are used to analyze the wave effects. Wave param- eters include dominant wave period (dpd), significant wave height (swh), average wave period (apd) and the angle between the dominant wave direction (dwd) and the wind direction. Collocated data are divided into sub-datasets according to the different intervals of each wave parameter. A root mean square error (RMSE) for the wind speed and a mean absolute error (MAE) for the wind direction are calculated from the sub-datasets, which are considered as the function of wave parameters. Finally, optimal wave conditions on wind retrieved from the ASCAT are determined based on the error analyses. The results show the ocean wave parameters have correlative relationships with the RMSE of the retrieved wind speed and the MAE of the retrieved wind direction. The optimal wave conditions are presented in terms of dpd, swh, apd and angle.展开更多
This paper describes the numerical study of nonstratified airflow over a real complex terrain. Attention is focused on the mechanism of a local strong wind induced by a topographic effect. In order to clarify the mech...This paper describes the numerical study of nonstratified airflow over a real complex terrain. Attention is focused on the mechanism of a local strong wind induced by a topographic effect. In order to clarify the mechanism of the occurrence of strong winds accompanied by the effects of terrain, the use of a numerical simulation is very effective, in which conditions can be set without the influence of ground roughness and temperature distribution. As a result, airflow converged to a small basin of mountain terrain in the upper stream, and local strong wind was generated leeward along the slope of the mountain terrain. Furthermore, the influence of the reproduction accuracy of geographical features, that is, horizontal grid resolution, was examined. Consequently, to reproduce the above-mentioned local strong wind, it was shown that horizontal grid resolution from 50 m to about 100 m was necessary.展开更多
A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters ...A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters of wind velocity, earthquake ground acceleration and excitations occurrence probability are taken into account and then the combination of the earthquake effects in structure wind resistant design is analyzed with the convolution approach. The results indicate that as for the tall flexible buildings whose lateral force is governed by wind loading, the maximum lateral loads verification with respect to the wind resistant design combined with earthquake effects may be more unfavorable compared with that in terms of the earthquake resistant design involving wind effects.展开更多
With the presence of wind waves, the swaying of survey vessel may effect the quality of sub-bottom profiler records and, therefore, it is necessary to correct the distortions induced by wave action. A major issue is t...With the presence of wind waves, the swaying of survey vessel may effect the quality of sub-bottom profiler records and, therefore, it is necessary to correct the distortions induced by wave action. A major issue is to distinguish wind wave effect and real bedforms such as sand waves. In this paper, a bandstop filter is designed according to the frequency features of wind wave effect to treat the distortion of seabed topography by wind waves. The technique is used to correct the sub-bottom profile in order to eliminate the wave-induced distortions for the sub-bottom profile records from the Yangtze Estuary. This study shows that the undulate seabed record is resulted from wave action, rather than the presence of sand waves, and the filtration technique helps to eliminate the wave effect and recover the real morphology of seabed and the sediment sequence underneath. In addition, a method for data processing is proposed for the case that the record indeed represents a combination of wave effects and real bedforms.展开更多
In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the hi...In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.展开更多
Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model take...Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model takes into account attenuation, volume backscattering, and sea surface perturbation by raindrops under rain conditions. A match-up dataset is built to evaluate rain effects, in combination with the Jason-1 normalized radar cross section, precipitation radar data from the Tropical Rainfall Measuring Mission, and sea surface wind reanalysis data from the European Centre for Medium-Range Weather Forecasts. The results show that rain-induced surface perturbation backscatter increases with rain rate at Ku-band, but their correlation at C-band is poor. In addition, rain surface perturbation and attenuation have major effects on radar altimeter wind measurements. Finally, a rain correction model for Jason-1 winds is developed and validation results prove its ability to reduce rain-induced inaccuracies in wind retrievals.展开更多
-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under...-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.展开更多
The influence of wake parameters on the exergy analysis of single array wind farm is studied in this paper. Key parameters which influence wake effects in a wind farm are wind velocity, tip speed ratio, number of blad...The influence of wake parameters on the exergy analysis of single array wind farm is studied in this paper. Key parameters which influence wake effects in a wind farm are wind velocity, tip speed ratio, number of blades, rotor speed, rotor diameter and hub height. Three different models namely power, wake and exergy model were used in estimating the exergy efficiency of the single array wind farm. Even though it is ideal for wind farms to fix the wind turbines in rows and columns the conditions of the site may not always be condu- cive for it. Hence analysis has been done keeping the wind turbines at random in a row and the effect of positioning on the performance is analyzed. Energy and exergy efficiency calculations were made for different cases by varying the positions of wind turbines in the single array wind farm. Standard relations were used in estimating the energy deficit in the wind farm due to wake effects. The wake effects were found to have an aggregated influence on the energy production of the wind farm, which results from the changes in the key parameters mentioned above. Potential areas for reducing energy losses by proper location and selection of turbines based on rating are highlighted. The influence of individual parameters contributing to the wake ef-fect were analyzed and discussed in detail.展开更多
For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, ...For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, generating capacitive reactive power to the network [1] and [2]. Indeed, it must be noted that these effects affect the windings of the transformer when the coupling is in star or triangle. This study is conducted to show that capacitive effects affect transformer windings differently when coupling is in stars or triangles. The results obtained are interesting and can be exploited in electrical transmission networks to ensure a long lifespan of transformers.展开更多
基金National Natural Science Foundation of China under Grant Nos.51222801 and 51378134Yangcheng Scholarship in Guangzhou Municipal Universities under Project No.12A004Sthe Research Funding for Ph.D Programme in Higher Education Universities under Project No.20124410110005
文摘Full-scale measurements are regarded as the most reliable method to evaluate wind effects on large buildings and structures. Some selected results are presented in this paper from the full-scale measurement of wind effects on a long-span steel roof structure during the passage of Typhoon Fanapi. Some fi eld data, including wind speed and direction, acceleration responses, etc., were continuously and simultaneously recorded during the passage of the typhoon. Comprehensive analysis of the measured data is conducted to evaluate the typhoon-generated wind characteristics and its effects on a long-span steel roof. The fi rst four natural frequencies and their vibration mode shapes of the Guangzhou International Sports Arena(GISA) roof are evaluated by the stochastic subspace identifi cation(SSI) method and comparisons with those from fi nite element(FE) analysis are made. Meanwhile, damping ratios of the roof are also identifi ed by the SSI method and compared with those identifi ed by the random decrement method; the amplitude-dependent damping behaviors are also discussed. The fullscale measurement results are further compared with the corresponding wind tunnel test results to evaluate its reliability. The results obtained from this study are valuable for academic and professional engineers involved in the design of large-span roof structures.
文摘This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory.
基金This study was co-supported by the National Key Research and Development Program of China(No.2020YFC1512500),The Advanced Aviation Power Innovation institution,The Aero Engine Academy of China,and Tsinghua University Initiative Scientific Research Program,China.
文摘Ducted fans have been extensively used in Unmanned Aerial Vehicles(UAVs)for a variety of missions because of high efficiency,high safety and low noise.Wind,as a kind of typical meteorological condition,brings significant aerodynamic interference to the ducted fan,which seriously threatens flight stability and safety.In this work,the numerical simulation with the Unsteady Reynolds Averaged Navier-Stokes(URANS)method and the sliding mesh technique is performed to evaluate the steady wind effect.The results show that the wind will lead to serious unsteady effects in the flow field,and the thrust fluctuates at the blade passing frequency of 200 Hz.As the wind speed increases,the rotor thrust increases,the duct thrust decreases,and the total thrust changes little.Flow instability may occur when the wind speed exceeds 8 m/s.As the angle of low-speed wind increases,the rotor thrust changes little,the duct thrust increases,and the total thrust increases.In addition,we figure out that cases with the same crosswind ratio are similar in results,and increasing the rotating speed or fan radius is beneficial to performance improvement in wind.The findings are essential to the ducted fan design and UAV flight control design for stable and safe operations in wind conditions.
基金This research was supported by the 100-Young-Researcher Project of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).
文摘Wind not only causes extensive damages to trees in many parts of the world, it also has more subtle effects on the growth and morphology of trees and forest ecology as well. Wind damage to trees has historically been the field of silviculture, but increasing recognition of the importance and complexity of the subject has recently got people involved from many other disciplines. Due to the global climate changes, it is believed that the risk of further and stronger storms is increasing. In order to better understand the effects of wind on individual trees, forest stand and forest ecosystem, and further to practice the management of forests, it is necessary to summarize the research results related to this subject. This review was mostly based on the references from recent researches in the field, especially from the symposium volumes of some international conferences on this subject. The results indicated that there have been significant progresses in the following aspects: 1) the aerodynamic interaction between wind and trees, 2) the mechanics of trees under wind loading and adaptive growth, 3) the tree's physiological responses to wind, and 4) the risk assessment of wind damage to forest. However, there are some aspects which may need further studies: 1) wind damage to natural forests, 2) wind-driven gap formation and forest dynamics, 3) the effects of changes resulted from wind disturbances on ecological processes of forest ecosystem, and 4) management for the wind-damaged forests. Key words Wind - Wind effect - Trees/forest - Forest ecology - Disturbance CLC number S718 Document code B Foundation item: This research was supported by “the 100-Young-Researcher Project” of Chinese Academy of Sciences (BR0301) and National Natural Science Foundation (30371149).Biography: ZHU Jiao-jun (1965-), male, Ph. Doctor, Professor of Institute of Applied Ecology, Chinese Academy of Sciences, Professor of Graduate School of Chinese Academy of Sciences. China. Scholar researcher of Faculty of Agriculture, Niigata University, JapanResponsible editor: Song Funan
文摘A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.
基金supported by the National Natural Science Foundation of China (90715040)
文摘Most previous investigations on interference effects of tall buildings under wind actions focused on the wind induced interference effects between two buildings,and the interference effects of three or more buildings have seldom been studied so far due to the huge workload involved in experiments and data processing.In this paper,mean and dynamic force/response interference effects and peak wind pressure interference effects of two and three tall buildings,especially the three-building configuration,are investigated through a series of wind tunnel tests on typical tall building models using high frequency force balance technique and wind pressure measurements.Furthermore,the present paper focuses on the effects of parameters,including breadth ratio and height ratio of the buildings and terrain category,on the interference factors and derives relevant regression results for the interference factors.
基金The National Natural Science Youth Foundation of China under contract Nos 41306191 and 41306192the National High Tech-nology Development Program(863 Program) of China under contract No.2013AA09A505the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China under contract No.JG1317
文摘To improve retrieval accuracy, this paper studies wave effects on retrieved wind field from a scatterometer. First, the advanced scatterometer (ASCAT) data and buoy data of the National Data Buoy Center (NDBC) are collocated. Buoy wind speed is converted into neutral wind at 10 m height. Then, ASCAT data are com- pared with the buoy data for the wind speed and direction. Subsequently, the errors between the ASCAT and the buoy wind as a function of each wave parameter are used to analyze the wave effects. Wave param- eters include dominant wave period (dpd), significant wave height (swh), average wave period (apd) and the angle between the dominant wave direction (dwd) and the wind direction. Collocated data are divided into sub-datasets according to the different intervals of each wave parameter. A root mean square error (RMSE) for the wind speed and a mean absolute error (MAE) for the wind direction are calculated from the sub-datasets, which are considered as the function of wave parameters. Finally, optimal wave conditions on wind retrieved from the ASCAT are determined based on the error analyses. The results show the ocean wave parameters have correlative relationships with the RMSE of the retrieved wind speed and the MAE of the retrieved wind direction. The optimal wave conditions are presented in terms of dpd, swh, apd and angle.
文摘This paper describes the numerical study of nonstratified airflow over a real complex terrain. Attention is focused on the mechanism of a local strong wind induced by a topographic effect. In order to clarify the mechanism of the occurrence of strong winds accompanied by the effects of terrain, the use of a numerical simulation is very effective, in which conditions can be set without the influence of ground roughness and temperature distribution. As a result, airflow converged to a small basin of mountain terrain in the upper stream, and local strong wind was generated leeward along the slope of the mountain terrain. Furthermore, the influence of the reproduction accuracy of geographical features, that is, horizontal grid resolution, was examined. Consequently, to reproduce the above-mentioned local strong wind, it was shown that horizontal grid resolution from 50 m to about 100 m was necessary.
基金Project supported by the National Natural Science Foundation of China (No.50321803)
文摘A model on the earthquake effects combination in wind resistant design of high-rise flexible structures is proposed in accordance with the probability method. Based on the Turkstra criteria, the stochastic characters of wind velocity, earthquake ground acceleration and excitations occurrence probability are taken into account and then the combination of the earthquake effects in structure wind resistant design is analyzed with the convolution approach. The results indicate that as for the tall flexible buildings whose lateral force is governed by wind loading, the maximum lateral loads verification with respect to the wind resistant design combined with earthquake effects may be more unfavorable compared with that in terms of the earthquake resistant design involving wind effects.
基金The workis supported bythe National Natural Science Foundation of China (Grant Nos 40231010 and 40476041)
文摘With the presence of wind waves, the swaying of survey vessel may effect the quality of sub-bottom profiler records and, therefore, it is necessary to correct the distortions induced by wave action. A major issue is to distinguish wind wave effect and real bedforms such as sand waves. In this paper, a bandstop filter is designed according to the frequency features of wind wave effect to treat the distortion of seabed topography by wind waves. The technique is used to correct the sub-bottom profile in order to eliminate the wave-induced distortions for the sub-bottom profile records from the Yangtze Estuary. This study shows that the undulate seabed record is resulted from wave action, rather than the presence of sand waves, and the filtration technique helps to eliminate the wave effect and recover the real morphology of seabed and the sediment sequence underneath. In addition, a method for data processing is proposed for the case that the record indeed represents a combination of wave effects and real bedforms.
基金financially supported by the Ministry of Industry and Information Technology of China(Grant No.[2016]546)
文摘In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.Y0S04300KB)the Major Program for the Research Equipment of Chinese Academy of Sciences (No.YZ200946)
文摘Rain is one of the main sources of error in dual-frequency altimeter Jason-1 wind measurement. In this study, a new radar altimeter backscatter model is proposed and validated to eliminate rain effects. The model takes into account attenuation, volume backscattering, and sea surface perturbation by raindrops under rain conditions. A match-up dataset is built to evaluate rain effects, in combination with the Jason-1 normalized radar cross section, precipitation radar data from the Tropical Rainfall Measuring Mission, and sea surface wind reanalysis data from the European Centre for Medium-Range Weather Forecasts. The results show that rain-induced surface perturbation backscatter increases with rain rate at Ku-band, but their correlation at C-band is poor. In addition, rain surface perturbation and attenuation have major effects on radar altimeter wind measurements. Finally, a rain correction model for Jason-1 winds is developed and validation results prove its ability to reduce rain-induced inaccuracies in wind retrievals.
文摘-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.
文摘The influence of wake parameters on the exergy analysis of single array wind farm is studied in this paper. Key parameters which influence wake effects in a wind farm are wind velocity, tip speed ratio, number of blades, rotor speed, rotor diameter and hub height. Three different models namely power, wake and exergy model were used in estimating the exergy efficiency of the single array wind farm. Even though it is ideal for wind farms to fix the wind turbines in rows and columns the conditions of the site may not always be condu- cive for it. Hence analysis has been done keeping the wind turbines at random in a row and the effect of positioning on the performance is analyzed. Energy and exergy efficiency calculations were made for different cases by varying the positions of wind turbines in the single array wind farm. Standard relations were used in estimating the energy deficit in the wind farm due to wake effects. The wake effects were found to have an aggregated influence on the energy production of the wind farm, which results from the changes in the key parameters mentioned above. Potential areas for reducing energy losses by proper location and selection of turbines based on rating are highlighted. The influence of individual parameters contributing to the wake ef-fect were analyzed and discussed in detail.
文摘For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, generating capacitive reactive power to the network [1] and [2]. Indeed, it must be noted that these effects affect the windings of the transformer when the coupling is in star or triangle. This study is conducted to show that capacitive effects affect transformer windings differently when coupling is in stars or triangles. The results obtained are interesting and can be exploited in electrical transmission networks to ensure a long lifespan of transformers.