开发有效的风机电磁暂态模型是进行海上风电并网研究的基础。根据不同生产厂家所提供的直驱风机模型,提出了一种基于厂家黑盒模型的直驱风机电磁暂态建模方法。利用厂家所提供的模型测试数据解析风机的故障响应特性,推导了不同厂家在电...开发有效的风机电磁暂态模型是进行海上风电并网研究的基础。根据不同生产厂家所提供的直驱风机模型,提出了一种基于厂家黑盒模型的直驱风机电磁暂态建模方法。利用厂家所提供的模型测试数据解析风机的故障响应特性,推导了不同厂家在电压故障下有功和无功功率响应表达式,包括故障期间的穿越控制过程及不同过程间的暂态切换策略。提出了加权平均压降的风电场等值方法,采用自主研发的全电磁暂态仿真软件(power system model,PSModel)对我国广东某海上风电场进行全电磁暂态建模。根据稳态潮流及暂态特性结果验证了模型可通过系统测试,且有效实现了海上风电场的全电磁暂态建模,从而为该风场接入大电网后的安全稳定分析提供了研究基础。展开更多
There has been an increasing global and local interest in developing renewable, clean, and cheap energy towards achieving Goal number 7 of the Sustainable Development Goals (SDG). However, decisions involving suitable...There has been an increasing global and local interest in developing renewable, clean, and cheap energy towards achieving Goal number 7 of the Sustainable Development Goals (SDG). However, decisions involving suitable and sustainable locations for renewable energy projects remain an important task. This study employed Geographic Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) to spatially analyze and model wind farm site suitability in Nasarawa State. The aim is to integrate the environmental, social, and economic aspects of decision-making for identifying sustainable wind farm sites. The study distinguished between two sets of decision criteria: decision constraints and decision factors. The former defined the exclusion zones while the latter were standardized based on fuzzy logic to depict varying degrees of suitability across the State. The MCDA applied the weighted linear combination method, with relative weights generated through pairwise comparisons of the analytic hierarchy process to analyze three policy scenarios: equal weights, environmental/social priority, and economic priority scenario. A combination of resulting composite maps from the constraints and the factors gave the final suitability maps. The resulting suitability index (SI) for the respective policy scenario describes the degrees of suitability: Ideal locations were denoted by one (1) and the not suitable locations by zero (0), with values in-between depicting varying degrees of wind farm site suitability. Based on the SI, priority locations indicating areas with good prospects, in addition to the most suitable parcels of land, were identified and delineated. The composite decision constraint revealed that wind farm projects would not be viable in more than half (57.58%) of the State. Wind speed was the major constraint and accounted for the exclusion of 46.25%, with a mean fuzzy membership value of 0.2008 indicating low suitability across the State. Also, the average acceptable wind farm location for the three-policy scenario was 33.33% of the entire study area. Lafia, Obi, Keana, Awe, Nasarawa-Eggon, Wamba and Kokona LGAs were the identified priority Local Government Areas (LGAs). However, only Lafia, Obi, and Nasarawa-Eggon were consistent with changes in the policy objectives. All the priority LGAs have one or more of the most suitable parcels within their administrative boundaries except for Wamba. Despite the severe limitations of wind speed, substantial parts of Nasarawa State still provide great development potentials for wind energy. The “most suitable” locations in Lafia, Nasarawa-Eggon, and Obi LGAs should have first consideration for the development of wind energy in the State.展开更多
To ensure the stable operation of power systems with large proportions of wind power,China has published a series of national,industry,and enterprise standards for wind power.The increase in the number of standards an...To ensure the stable operation of power systems with large proportions of wind power,China has published a series of national,industry,and enterprise standards for wind power.The increase in the number of standards and the expansion of their application scope have given rise to a situation where multiple standards overlap and conflict with regard to the establishment of models and their applicability,resulting in unclear standard application scenarios.Therefore,it is imperative to analyze the development of wind-turbine and wind-farm modeling,along with the relevant standards.This paper presents the methods for wind-turbine modeling,the equivalent model of wind farms based on the general model of wind turbines,and the technical provisions and application scenarios involved in the relevant domestic and international standards.The adaptability of the relevant standards is examined.The results of this study are helpful for advancing wind power generation in China and ensuring the safe and stable operation of large-scale wind power systems.展开更多
The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/...The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/converter model, the comprehensive numerical simulations with multiple wind farms of DFIG type involved are carried out to reveal the impact of wind farm on dynamic behavior of existing interconnected power system. Different load models involving nonlinear load model and induction motor model are considered during simulations. Finally, some preliminary conclusions are summarized and discussed.展开更多
降低风电场出力波动性有利于促进电网友好运行,而尾流优化控制是降低整场出力波动的重要措施。现有尾流优化控制大都基于稳态模型,却忽略尾流动态迟延特性。但尾流迟延在风速不确定性基础上会进一步增加风电场出力的波动性。为此,该文...降低风电场出力波动性有利于促进电网友好运行,而尾流优化控制是降低整场出力波动的重要措施。现有尾流优化控制大都基于稳态模型,却忽略尾流动态迟延特性。但尾流迟延在风速不确定性基础上会进一步增加风电场出力的波动性。为此,该文基于稳态尾流模型辅以迟延计算,构建风电场准稳态尾流模型以同时兼顾尾流干涉作用与动态迟延特性。在此基础上,提出一种考虑迟延的模型预测平稳控制方法(predictive control considering delay,MPC-D),以指令跟踪与功率波动最小为目标协调各机组出力。最后,在WFSim上构建含33台机组的风电场仿真模型,并基于此分析尾流迟延对风电机组以及整场运行性能影响。结果表明,所建准稳态尾流模型能同时模拟尾流速度损失、机组功率迟延和整场功率阶梯变化等特性。并且由MPC-D所得整场出力较基于稳态模型的控制方法平均相对误差、均方根误差以及滑动均方根误差均得到改善,同时能防止机组桨距角频繁动作。展开更多
文摘开发有效的风机电磁暂态模型是进行海上风电并网研究的基础。根据不同生产厂家所提供的直驱风机模型,提出了一种基于厂家黑盒模型的直驱风机电磁暂态建模方法。利用厂家所提供的模型测试数据解析风机的故障响应特性,推导了不同厂家在电压故障下有功和无功功率响应表达式,包括故障期间的穿越控制过程及不同过程间的暂态切换策略。提出了加权平均压降的风电场等值方法,采用自主研发的全电磁暂态仿真软件(power system model,PSModel)对我国广东某海上风电场进行全电磁暂态建模。根据稳态潮流及暂态特性结果验证了模型可通过系统测试,且有效实现了海上风电场的全电磁暂态建模,从而为该风场接入大电网后的安全稳定分析提供了研究基础。
文摘There has been an increasing global and local interest in developing renewable, clean, and cheap energy towards achieving Goal number 7 of the Sustainable Development Goals (SDG). However, decisions involving suitable and sustainable locations for renewable energy projects remain an important task. This study employed Geographic Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) to spatially analyze and model wind farm site suitability in Nasarawa State. The aim is to integrate the environmental, social, and economic aspects of decision-making for identifying sustainable wind farm sites. The study distinguished between two sets of decision criteria: decision constraints and decision factors. The former defined the exclusion zones while the latter were standardized based on fuzzy logic to depict varying degrees of suitability across the State. The MCDA applied the weighted linear combination method, with relative weights generated through pairwise comparisons of the analytic hierarchy process to analyze three policy scenarios: equal weights, environmental/social priority, and economic priority scenario. A combination of resulting composite maps from the constraints and the factors gave the final suitability maps. The resulting suitability index (SI) for the respective policy scenario describes the degrees of suitability: Ideal locations were denoted by one (1) and the not suitable locations by zero (0), with values in-between depicting varying degrees of wind farm site suitability. Based on the SI, priority locations indicating areas with good prospects, in addition to the most suitable parcels of land, were identified and delineated. The composite decision constraint revealed that wind farm projects would not be viable in more than half (57.58%) of the State. Wind speed was the major constraint and accounted for the exclusion of 46.25%, with a mean fuzzy membership value of 0.2008 indicating low suitability across the State. Also, the average acceptable wind farm location for the three-policy scenario was 33.33% of the entire study area. Lafia, Obi, Keana, Awe, Nasarawa-Eggon, Wamba and Kokona LGAs were the identified priority Local Government Areas (LGAs). However, only Lafia, Obi, and Nasarawa-Eggon were consistent with changes in the policy objectives. All the priority LGAs have one or more of the most suitable parcels within their administrative boundaries except for Wamba. Despite the severe limitations of wind speed, substantial parts of Nasarawa State still provide great development potentials for wind energy. The “most suitable” locations in Lafia, Nasarawa-Eggon, and Obi LGAs should have first consideration for the development of wind energy in the State.
基金supported in part by the Joint Research Fund in Smart Grid (U1966208) under a cooperative agreement between the National Natural Science Foundation of China (NSFC) and State Grid Corporation of China (SGCC)
文摘To ensure the stable operation of power systems with large proportions of wind power,China has published a series of national,industry,and enterprise standards for wind power.The increase in the number of standards and the expansion of their application scope have given rise to a situation where multiple standards overlap and conflict with regard to the establishment of models and their applicability,resulting in unclear standard application scenarios.Therefore,it is imperative to analyze the development of wind-turbine and wind-farm modeling,along with the relevant standards.This paper presents the methods for wind-turbine modeling,the equivalent model of wind farms based on the general model of wind turbines,and the technical provisions and application scenarios involved in the relevant domestic and international standards.The adaptability of the relevant standards is examined.The results of this study are helpful for advancing wind power generation in China and ensuring the safe and stable operation of large-scale wind power systems.
文摘The impact of large-scale grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type on power system transient stability is elaborately discussed in this paper. In accordance with an equivalent generator/converter model, the comprehensive numerical simulations with multiple wind farms of DFIG type involved are carried out to reveal the impact of wind farm on dynamic behavior of existing interconnected power system. Different load models involving nonlinear load model and induction motor model are considered during simulations. Finally, some preliminary conclusions are summarized and discussed.
文摘降低风电场出力波动性有利于促进电网友好运行,而尾流优化控制是降低整场出力波动的重要措施。现有尾流优化控制大都基于稳态模型,却忽略尾流动态迟延特性。但尾流迟延在风速不确定性基础上会进一步增加风电场出力的波动性。为此,该文基于稳态尾流模型辅以迟延计算,构建风电场准稳态尾流模型以同时兼顾尾流干涉作用与动态迟延特性。在此基础上,提出一种考虑迟延的模型预测平稳控制方法(predictive control considering delay,MPC-D),以指令跟踪与功率波动最小为目标协调各机组出力。最后,在WFSim上构建含33台机组的风电场仿真模型,并基于此分析尾流迟延对风电机组以及整场运行性能影响。结果表明,所建准稳态尾流模型能同时模拟尾流速度损失、机组功率迟延和整场功率阶梯变化等特性。并且由MPC-D所得整场出力较基于稳态模型的控制方法平均相对误差、均方根误差以及滑动均方根误差均得到改善,同时能防止机组桨距角频繁动作。