期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
1
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 Fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
Energy Storage Modeling of Inverter Air Conditioning for Output Optimizing of Wind Generation in the Electricity Market 被引量:8
2
作者 Meng Song Ciwei Gao +1 位作者 Jianlin Yang Huaguang Yan 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第3期305-315,共11页
In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s beha... In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s behaviors in the real-time market for less economic loss caused by the fluctuations of wind power.The inverter AC,as a typical demand response resource,is constructed as a power type battery model(PTBM)and a capacity type battery model(CTBM)according to the different control methods,which are expressed through a circuit model and mathematical model to describe the energy storage characteristics of ACs.Moreover,the comparisons between the PTBM and CTBM are given analytically by their response speed,power&energy capacity and the cost of control,which will be helpful to guide the associated operators to choose the appropriate models to take part in demand response.Considering that the wind generation fluctuates frequently and greatly,the PTBM is chosen to take part of the demand response for output optimizing of the wind generation.The simulation results demonstrate that PTBMs can work in the way of conventional batteries(CBs)to optimize wind generation in the real-time market. 展开更多
关键词 Demand response electricity market energy storage modeling inverter air conditioning wind generation
原文传递
Assessment Model for Distributed Wind Generation Hosting Capacity Considering Complex Spatial Correlations 被引量:1
3
作者 Han Wu Yue Yuan +1 位作者 Junpeng Zhu Yundai Xu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1194-1206,共13页
To facilitate the large-scale integration of distributed wind generation(DWG), the uncertainty of DWG outputs needs to be quantified, and the maximum DWG hosting capacity(DWGHC) of distribution systems must be assesse... To facilitate the large-scale integration of distributed wind generation(DWG), the uncertainty of DWG outputs needs to be quantified, and the maximum DWG hosting capacity(DWGHC) of distribution systems must be assessed. However, the structure of the high-dimensional nonlinear dependencies and the abnormal marginal distributions observed in geographically dispersed DWG outputs lead to the increase of the complexity of the uncertainty analysis. To address this issue,this paper proposes a novel assessment model for DWGHC that considers the spatial correlations between distributed generation(DG) outputs. In our method, an advanced dependence modeling approach called vine copula is applied to capture the high-dimensional correlation between geographically dispersed DWG outputs and generate a sufficient number of correlated scenarios. To avoid an overly conservative hosting capacity in some extreme scenarios, a novel chance-constrained assessment model for DWGHC is developed to determine the optimal sizes and locations of DWG for a given DWG curtailment probability. To handle the computational challenges associated with large-scale scenarios, a bilinear variant of Benders decomposition(BD) is employed to solve the chance-constrained problem.The effectiveness of the proposed method is demonstrated using a typical 38-bus distribution system in eastern China. 展开更多
关键词 Correlation Benders decomposition(BD) distributed wind generation(DWG) hosting capacity vine copula
原文传递
An Overview of Research on Optimization of Integrated Solar/Wind Power Generation Systems 被引量:1
4
作者 Zhonglei Shao Kwok Lun Lo 《World Journal of Engineering and Technology》 2016年第3期35-42,共8页
Although transmission systems are able to cover most of the areas in many countries, there are still some isolated areas such as rural counties and remote desert lands where grid power cannot be accessed. Therefore, a... Although transmission systems are able to cover most of the areas in many countries, there are still some isolated areas such as rural counties and remote desert lands where grid power cannot be accessed. Therefore, a reliable and economical power supply scheme is required to solve the problem. One of them combines wind/solar power generation with the support of storage system. This paper is to give an overview of the optimization methodologies about the wind/solar stand-alone system supported by storage systems or integrating with other renewable or conventional power generation sources. It is shown that continued research and optimization methodology in this area are still in great need for performance improvement. 展开更多
关键词 Solar/wind generation System OPTIMIZATION TECHNO-ECONOMIC
下载PDF
Difference between grid connections of large-scale wind power and conventional synchronous generation 被引量:7
5
作者 Jie Li Chao Liu +2 位作者 Pengfei Zhang Yafeng Wang Jun Rong 《Global Energy Interconnection》 2020年第5期486-493,共8页
In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is rel... In China, regions with abundant wind energy resources are generally located at the end of power grids. The power grid architecture in these regions is typically not sufficiently strong, and the energy structure is relatively simple. Thus, connecting large-capacity wind power units complicates the peak load regulation and stable operation of the power grids in these regions. Most wind turbines use power electronic converter technology, which affects the safety and stability of the power grid differently compared with conventional synchronous generators. Furthermore, fluctuations in wind power cause fluctuations in the output of wind farms, making it difficult to create and implement suitable power generation plans for wind farms. The generation technology and grid connection scheme for wind power and conventional thermal power generation differ considerably. Moreover, the active and reactive power control abilities of wind turbines are weaker than those of thermal power units, necessitating additional equipment to control wind turbines. Hence, to address the aforementioned issues with large-scale wind power generation, this study analyzes the differences between the grid connection and collection strategies for wind power bases and thermal power plants. Based on this analysis, the differences in the power control modes of wind power and thermal power are further investigated. Finally, the stability of different control modes is analyzed through simulation. The findings can be beneficial for the planning and development of large-scale wind power generation farms. 展开更多
关键词 Large-scale wind power generation Conventional synchronous generators Grid connection scheme Power control
下载PDF
Wind Energy Generation and Assessment of Resources in India 被引量:1
6
作者 Vishakha Tank Jignasha Bhutka T. Harinarayana 《Journal of Power and Energy Engineering》 2016年第10期25-38,共15页
The gap between energy demand and its generation is constantly widening. People have started giving more emphasis on renewable sources of energy. This paper presents the estimation of potential for wind energy generat... The gap between energy demand and its generation is constantly widening. People have started giving more emphasis on renewable sources of energy. This paper presents the estimation of potential for wind energy generation maps based on fixed wind turbine capacity. Although wind energy has developed substantially in recent years, we have only wind speed and wind potential density maps. Our attempt here is to generate wind energy generation potential maps. Major step in achieving this goal is modeling of wind energy conversion system using TRNSYS software. The model consists of three main components namely the weather, the turbines and energy conversion parameters. The weather data are provided from the meteorological database, namely Meteonorm. The simulated output is compared with actual wind generation of wind farms. After comparing our model results with the existing wind energy generation data, we have extended to compute the wind energy generation for all locations in India. For simulation, 4691 locations are identified considering 0.25° × 0.25° interval. The energy generation simulated data are compiled and developed into maps that are useful to all wind energy developers. The data generated and presented in the form of maps are for all the 30 states of India. 展开更多
关键词 wind Energy generation Map wind Turbine TRNSYS SIMULATION INDIA
下载PDF
Shantou Huaneng Nan'ao Wind Power Generation Project Entirely Completed
7
《Electricity》 2000年第2期57-57,共1页
关键词 PROJECT wind Shantou Huaneng Nan’ao wind Power generation Project Entirely Completed
下载PDF
Wind Power Generation
8
《Electricity》 1999年第3期52-53,共2页
关键词 wind Power generation CO
下载PDF
Inner Mongolia builds up world's class wind power generation farm
9
《Electricity》 1996年第4期41-41,共1页
The first phase project of Huitengxile Wind Power Generation Farm in Inner Mongolia, with nine 600 kW wind power generators installed, was formally put into commercial operation on November 28,
关键词 Inner Mongolia builds up world’s class wind power generation farm
下载PDF
Wind Power Generation Accumulated to 2 TWh in Ten Years in Nan'ao
10
《Electricity》 2000年第2期50-50,共1页
关键词 wind Power generation Accumulated to 2 TWh in Ten Years in Nan’ao
下载PDF
Capacity Optimization Configuration of Hydrogen Production System for Offshore Surplus Wind Power
11
作者 Yanshan Lu Binbin He +6 位作者 Jun Jiang Ruixiao Lin Xinzhen Zhang Zaimin Yang Zhi Rao Wenchuan Meng Siyang Sun 《Energy Engineering》 EI 2023年第12期2803-2818,共16页
To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of re... To solve the problem of residual wind power in offshore wind farms,a hydrogen production system with a reasonable capacity was configured to enhance the local load of wind farms and promote the local consumption of residual wind power.By studying the mathematical model of wind power output and calculating surplus wind power,as well as considering the hydrogen production/storage characteristics of the electrolyzer and hydrogen storage tank,an innovative capacity optimization allocation model was established.The objective of the model was to achieve the lowest total net present value over the entire life cycle.The model took into account the cost-benefit breakdown of equipment end-of-life cost,replacement cost,residual value gain,wind abandonment penalty,hydrogen transportation,and environmental value.The MATLAB-based platform invoked the CPLEX commercial solver to solve the model.Combined with the analysis of the annual average wind speed data from an offshore wind farm in Guangdong Province,the optimal capacity configuration results and the actual operation of the hydrogen production system were obtained.Under the calculation scenario,this hydrogen production system could consume 3,800 MWh of residual electricity from offshore wind power each year.It could achieve complete consumption of residual electricity from wind power without incurring the penalty cost of wind power.Additionally,it could produce 66,500 kg of green hydrogen from wind power,resulting in hydrogen sales revenue of 3.63 million RMB.It would also reduce pollutant emissions from coal-based hydrogen production by 1.5 tons and realize an environmental value of 4.83 million RMB.The annual net operating income exceeded 6 million RMB and the whole life cycle NPV income exceeded 50 million RMB.These results verified the feasibility and rationality of the established capacity optimization allocation model.The model could help advance power system planning and operation research and assist offshore wind farm operators in improving economic and environmental benefits. 展开更多
关键词 Surplus wind power offshore wind power hydrogen generation capacity optimization configuration total net present cost
下载PDF
A Temporary Frequency Response Strategy Using a Voltage Source-Based PermanentMagnet Synchronous Generator and Energy Storage Systems
12
作者 Baogang Chen Fenglin Miao +2 位作者 Jing Yang Chen Qi Wenyan Ji 《Energy Engineering》 EI 2024年第2期541-555,共15页
Energy storage systems(ESS)and permanent magnet synchronous generators(PMSG)are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different c... Energy storage systems(ESS)and permanent magnet synchronous generators(PMSG)are speculated to be able to exhibit frequency regulation capabilities by adding differential and proportional control loops with different control objectives.The available PMSG kinetic energy and charging/discharging capacities of the ESS were restricted.To improve the inertia response and frequency control capability,we propose a short-term frequency support strategy for the ESS and PMSG.To this end,the weights were embedded in the control loops to adjust the participation of the differential and proportional controls based on the system frequency excursion.The effectiveness of the proposed control strategy was verified using PSCAD/EMTDC.The simulations revealed that the proposed strategy could improve the maximum rate of change of the frequency nadir and maximum frequency excursion.Therefore,it provides a promising solution of ancillary services for frequency regulation of PMSG and ESS. 展开更多
关键词 Inertial control PMSG ESS wind power generation frequency support
下载PDF
Development modes analysis of renewable energy power generation in North Africa 被引量:5
13
作者 Liang Zhao Ruoying Yu +3 位作者 Zhe Wang Wei Yang Linan Qu Weidong Chen 《Global Energy Interconnection》 2020年第3期237-246,共10页
North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewabl... North African countries generally have strategic demands for energy transformation and sustainable development.Renewable energy development is important to achieve this goal.Considering three typical types of renewable energies—wind,photovoltaic(PV),and concentrating solar power(CSP)—an optimal planning model is established to minimize construction costs and power curtailment losses.The levelized cost of electricity is used as an index for assessing economic feasibility.In this study,wind and PV,wind/PV/CSP,and transnational interconnection modes are designed for Morocco,Egypt,and Tunisia.The installed capacities of renewable energy power generation are planned through the time sequence production simulation method for each country.The results show that renewable energy combined with power generation,including the CSP mode,can improve reliability of the power supply and reduce the power curtailment rate.The transnational interconnection mode can help realize mutual benefits of renewable energy power,while the apportionment of electricity prices and trading mechanisms are very important and are related to economic feasibility;thus,this mode is important for the future development of renewable energy in North Africa. 展开更多
关键词 North Africa Renewable energy wind power generation Solar energy generation Transnational interconnection Optimal planning Levelized cost of electricity
下载PDF
Analysis of Electromagnetic Performance of Modulated Coaxial Magnetic Gears Used in Semi-Direct Drive Wind Turbines 被引量:1
14
作者 Jungang Wang Liqun Qian +1 位作者 Shuairui Xu Ruina Mo 《Energy Engineering》 EI 2021年第2期251-264,共14页
Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of hig... Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise,high failure rate,and short service time.Magneticfield modulation electromagnetic gear transmission is a new non-contact transmission method.However,the conventional modulation magnetic gear has low torque density and torque defects with largefluctuations.In order to overcome the gear transmis-sion problems of the existing semi-direct drive wind power generation machinery and improve the electromag-netic performance of the traditional magnetic gear transmission,this paper proposes a new transmission scheme of a non-contact semi-direct drive wind generator with a surface mount Halbach array modulated mag-netic gear method,and considers the electromagnetic properties of the semi-direct drive modulation magnetic gear of the wind turbine.Thefinite element software is used to construct the model of the surface-mounted Halbach array magnetic gear and the conventional gear,analyzed the distribution of magneticfield lines of the two magnetic gears,calculated the air gap magneticflux density of the inner and outer air gap,and obtained the main harmonics of the inner and outer air gap magnetic density;calculated the static torque and steady-state operating torque of the inner and outer rotors in the model,compared the air gapflux density,harmonics and torque of the magnetic gears.The simulation results show that the magneticfield modulation type mag-netic gear of the surface mount Halbach array magnetic gear method improves the magnetic induction wave-form of the inner and outer air gap,reduces the pulse torquefluctuation,and has a 60%higher static torque.Applying it to semi-direct drive wind power generation equipment not only overcomes the shortcomings of mechanical gears,but also has higher electromagnetic performance.Therefore,the surface-mounted Halbach array modulated magnetic gear can be used to replace the mechanical gearbox in the semi-direct drive wind power generation equipment. 展开更多
关键词 wind power generation gear box magnetic gear finite element analysis
下载PDF
Design and Implementation of Bi-Directional DC-DC Converter for Wind Energy System 被引量:1
15
作者 K. Suresh Dr. R. Arulmozhiyal 《Circuits and Systems》 2016年第11期3705-3722,共18页
This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), pe... This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware. 展开更多
关键词 Bidirectional DC/DC Converter Boost DC/DC Converter wind Turbine generation System (WTGS) Permanent Magnet DC Generator (PMDC)
下载PDF
Harmonic Reduction in Wind Power Generating System Using Shunt Active Filter with SPWM Technique
16
作者 R. Zahira A. Peer Fathima Ranganath Muthu 《Circuits and Systems》 2016年第4期157-165,共9页
Due to environmental conditions, the wind power generation is fluctuating in nature. This affects the electrical network interconnected with these systems. When the wind power generators are connected to the nonlinear... Due to environmental conditions, the wind power generation is fluctuating in nature. This affects the electrical network interconnected with these systems. When the wind power generators are connected to the nonlinear loads, there is distortion in the waveform. These distortions should be within limits according to national and international guidelines framed for power quality. This paper presents a mitigation technique with a shunt active filter, which reduces harmonic distortion to the permitted limit. Sine pulse width modulation (SPWM) control scheme is used to control shunt active filter. This technique eliminates harmonic distortion and maintains unity power factor. The simulation for proposed method is carried out using MATLAB/SIMULINK and results are validated. 展开更多
关键词 wind Power generation SPWM Shunt Active Filter HARMONIC Power Quality
下载PDF
Frequency Regulation of VSC-MTDC System with Offshore Wind Farms
17
作者 Haoyu Liu Chongru Liu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期275-286,共12页
Frequency regulation of voltage source converter-based multi-terminal high-voltage direct current(VSC-MTDC)system with offshore wind farms enhances the frequency stability by compensating the power for a disturbed AC ... Frequency regulation of voltage source converter-based multi-terminal high-voltage direct current(VSC-MTDC)system with offshore wind farms enhances the frequency stability by compensating the power for a disturbed AC system.However,it is difficult to reasonably allocate frequency-regulation resources due to a lack of coordination mechanisms between wind farms and the MTDC system.Moreover,it is difficult for the frequency control of the wind farms to manage changes in wind speed;and the risk of wind-turbine stalls is high.Thus,based on the kinetic energy of wind turbines and the power margin of the converters,the frequency-regulation capability of wind turbines is evaluated,and a dynamic frequency-support scheme considering the real-time frequency-support capability of the wind turbines and system frequency evolution is proposed to improve the frequency-support performance.A power adaptation technique at variable wind speeds is developed;the active power in the frequency-support stage and restoration stage is switched according to the wind speed.A hierarchical zoning frequency-regulation scheme is designed to use the frequency-regulation resources of different links in the MTDC system with wind farms.The simulation results show that the novel frequency-regulation strategy maintains frequency stability with wind-speed changes and avoids multiple frequency dips. 展开更多
关键词 wind generation voltage source converter-based multi-terminal high-voltage direct current(VSC-MTDC) frequency regulation cooperative control adaptive control variable wind speed
原文传递
Economic Analysis of Demand Response Incorporated Optimal Power Flow
18
作者 Ulagammai Meyyappan S.Joyal Isac 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期399-413,共15页
Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description... Demand Response(DR)is one of the most cost-effective and unfailing techniques used by utilities for consumer load shifting.This research paper presents different DR programs in deregulated environments.The description and the classification of DR along with their potential benefits and associated cost components are presented.In addition,most DR measurement indices and their evaluation are also highlighted.Initially,the economic load model incorporated thermal,wind,and energy storage by considering the elasticity market price from its calculated locational marginal pricing(LMP).The various DR programs like direct load control,critical peak pricing,real-time pricing,time of use,and capacity market programs are considered during this study.The effect of demand response in electricity prices is highlighted using a simulated study on IEEE 30 bus system.Simulation is done by the Shuffled Frog Leap Algorithm(SFLA).Comprehensive performance comparison on voltage deviations,losses,and cost with and without considering DR is also presented in this paper. 展开更多
关键词 Demand response wind power generation shuffled frog leap algorithm optimal powerflow
下载PDF
Risk-averse Robust Interval Economic Dispatch for Power Systems with Large-scale Wind Power Integration
19
作者 Zhenjia Lin Haoyong Chen +2 位作者 Jinbin Chen Jianping Huang Mengshi Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第1期105-116,共12页
This paper presents a robust interval economic dispatch(RIED)model for power systems with large-scale wind power integration.Differing from existing interval optimization(IO)approaches that merely rely on the upper an... This paper presents a robust interval economic dispatch(RIED)model for power systems with large-scale wind power integration.Differing from existing interval optimization(IO)approaches that merely rely on the upper and lower boundaries of random variables,the distribution information retained in the historical data is introduced to the IO method in this paper.Based on the available probability distribution function(PDF),wind power curtailment and load shedding are quantified as the operational risk and incorporated into the decision-making process.In this model,we need not rely on the forecasted value of wind power,which is randomly fluctuating and quite unpredictable.Furthermore,when the PDFs of wind power are taken into account,the resulting dispatch solution makes a good tradeoff between the generation cost and the operational risk.Finally,the RIED model yields an optimal dispatch solution for thermal units and the allowable intervals of wind power for the wind farms,which efficiently mitigates the uncertainty in wind power generation and provides more practical suggestions for system operators.Simulation studies are conducted on a modified IEEE-118 bus system and the results verify the effectiveness of the proposed RIED model. 展开更多
关键词 Economic dispatch interval optimization RISK-AVERSE wind power generation
原文传递
Multi-dimensional scenario forecast for generation of multiple wind farms 被引量:10
20
作者 Ming YANG You LIN +2 位作者 Simeng ZHU Xueshan HAN Hongtao WANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第3期361-370,共10页
A novel multi-dimensional scenario forecast approach which can capture the dynamic temporal-spatial interdependence relation among the outputs of multiple wind farms is proposed.In the proposed approach,support vector... A novel multi-dimensional scenario forecast approach which can capture the dynamic temporal-spatial interdependence relation among the outputs of multiple wind farms is proposed.In the proposed approach,support vector machine(SVM)is applied for the spot forecast of wind power generation.The probability density function(PDF)of the SVM forecast error is predicted by sparse Bayesian learning(SBL),and the spot forecast result is corrected according to the error expectation obtained.The copula function is estimated using a Gaussian copula-based dynamic conditional correlation matrix regression(DCCMR)model to describe the correlation among the errors.And the multidimensional scenario is generated with respect to the estimated marginal distributions and the copula function.Test results on three adjacent wind farms illustrate the effectiveness of the proposed approach. 展开更多
关键词 wind power generation forecast Multidimensional scenario forecast Support vector machine(SVM) Sparse Bayesian learning(SBL) Gaussian copula Dynamic conditional correlation matrix
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部