This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. ...This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. The exit height can ensure that the incident rays, at arbitrary direction and arbitrary angle, after several transmission and reflection in the two right-angle reflectors, finally pass through the exit surface. Furthermore, it analyses the effects of different parameters on the exit height through computer simulation, and some important conclusions are obtained. The physical meaning of the sign of exit height is described, and the exact expression of the minimal thickness of the large optical path difference wind imaging interferometer is gained. This work is of great scientific significance to the static, real- time simultaneous detection of atmospheric wind field, and it will provide a theoretical and practical guidance for the miniaturization design and engineering realization of wind imaging interferometer.展开更多
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 40537031)the National Natural Science Foundation of China (Grant No. 40875013)+2 种基金the National Defense Basic Scientific Research Program of China (Grant No. A1420080187)the National High Technology Research and Development Program of China (GrantNo. 2006AA12Z152)Xianyang Normal University Research Fund (Grant No. 06XSYK268)
文摘This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. The exit height can ensure that the incident rays, at arbitrary direction and arbitrary angle, after several transmission and reflection in the two right-angle reflectors, finally pass through the exit surface. Furthermore, it analyses the effects of different parameters on the exit height through computer simulation, and some important conclusions are obtained. The physical meaning of the sign of exit height is described, and the exact expression of the minimal thickness of the large optical path difference wind imaging interferometer is gained. This work is of great scientific significance to the static, real- time simultaneous detection of atmospheric wind field, and it will provide a theoretical and practical guidance for the miniaturization design and engineering realization of wind imaging interferometer.