针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的...针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。展开更多
Distributed generation including wind turbine(WT) and photovoltaic panel increases very fast in recent years around the world, challenging the conventional way of probabilistic load flow(PLF) calculation. Reliable and...Distributed generation including wind turbine(WT) and photovoltaic panel increases very fast in recent years around the world, challenging the conventional way of probabilistic load flow(PLF) calculation. Reliable and efficient PLF method is required to take this chage into account.This paper studies the maximum entropy probabilistic density function reconstruction method based on cumulant arithmetic of linearized load flow formulation,and then develops a maximum entropy based PLF(MEPLF) calculation algorithm for power system integrated with wind power generation(WPG). Compared with traditional Gram–Charlier expansion based PLF(GC-PLF)calculation method, the proposed ME-PLF calculation algorithm can obtain more reliable and accurate probabilistic density functions(PDFs) of bus voltages and branch flows in various WT parameter scenarios. It can solve thelimitation of GC-PLF calculation method that mistakenly gains negative values in tail regions of PDFs. Linear dependence between active and reactive power injections of WPG can also be effectively considered by the modified cumulant calculation framework. Accuracy and efficiency of the proposed approach are validated with some test systems. Uncertainties yielded by the wind speed variations, WT locations, power factor fluctuations are considered.展开更多
文摘针对风电并网时的随机波动功率、负荷频率控制(load frequency control, LFC)系统参数变化所引起的电力系统频率稳定问题,提出了一种基于智能优化算法与改进目标函数的互联电网LFC系统最优PID控制器设计方法。首先,分析了基于PID控制的含风电互联电力系统LFC闭环模型。其次,在时间乘误差绝对值积分(integral of time multiplied absolute error, ITAE)性能指标的目标函数中考虑了区域控制器的输出信号偏差,对优化目标函数进行改进。采用性能优良的多元宇宙优化(multi-verse optimizer, MVO)算法先计算后验证的思路,寻优获得最优PID控制器参数。最后,以两区域4机组互联电力LFC系统为例,仿真验证了基于MVO算法结合改进目标函数所获得的PID控制器,比基于MVO算法所获得的PID控制器,对阶跃负荷扰动、随机负荷扰动、风电功率偏差扰动以及系统的参数变化,具有相对较好的鲁棒性能。并且,对控制器参数也具有相对较好的非脆弱性指标。
基金supported by National Natural Science Foundation of China(No.51625702,No.51377117,No.51677124)National High-tech R&D Program of China(863Program)(No.2015AA050403)
文摘Distributed generation including wind turbine(WT) and photovoltaic panel increases very fast in recent years around the world, challenging the conventional way of probabilistic load flow(PLF) calculation. Reliable and efficient PLF method is required to take this chage into account.This paper studies the maximum entropy probabilistic density function reconstruction method based on cumulant arithmetic of linearized load flow formulation,and then develops a maximum entropy based PLF(MEPLF) calculation algorithm for power system integrated with wind power generation(WPG). Compared with traditional Gram–Charlier expansion based PLF(GC-PLF)calculation method, the proposed ME-PLF calculation algorithm can obtain more reliable and accurate probabilistic density functions(PDFs) of bus voltages and branch flows in various WT parameter scenarios. It can solve thelimitation of GC-PLF calculation method that mistakenly gains negative values in tail regions of PDFs. Linear dependence between active and reactive power injections of WPG can also be effectively considered by the modified cumulant calculation framework. Accuracy and efficiency of the proposed approach are validated with some test systems. Uncertainties yielded by the wind speed variations, WT locations, power factor fluctuations are considered.