期刊文献+
共找到3,050篇文章
< 1 2 153 >
每页显示 20 50 100
Optimized Design of Bio-Inspired Wind Turbine Blades
1
作者 Yuanjun Dai Dong Wang +1 位作者 Xiongfei Liu Weimin Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1647-1664,共18页
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti... To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance. 展开更多
关键词 AIRFOIL wind turbines blade design CFD
下载PDF
Parametric Analysis and Design Considerations forMicroWind Turbines:A Comprehensive Review
2
作者 Dattu Ghane Vishnu Wakchaure 《Energy Engineering》 EI 2024年第11期3199-3220,共22页
Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier r... Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines. 展开更多
关键词 Aero-acoustics behavior design optimization micro wind turbine performance analysis shrouded wind turbine wind energy
下载PDF
Electromagnetic Design of a Switched Reluctance Motor With Segmental Rotors and Full-pitch Windings 被引量:9
3
作者 陈小元 邓智泉 +1 位作者 许培林 范娜 《中国电机工程学报》 EI CSCD 北大核心 2011年第36期I0010-I0010,245,共1页
整距绕组分块转子开关磁阻电机具有高速运行时低风(油)阻和低铁心损耗等优点,特别适合用于航天航空驱动系统。根据整距绕组分块转子开关磁阻电机的基本工作原理,结合输出功率与平均转矩的关系,将绕组电流等效为方波,推导出了整距... 整距绕组分块转子开关磁阻电机具有高速运行时低风(油)阻和低铁心损耗等优点,特别适合用于航天航空驱动系统。根据整距绕组分块转子开关磁阻电机的基本工作原理,结合输出功率与平均转矩的关系,将绕组电流等效为方波,推导出了整距绕组分块转子开关磁阻电机的主体尺寸计算公式;基于电机定转子未对齐位置和对齐位置的电磁特性,以及整距绕组分块转子开关磁阻电机的电磁特点,确定了定、转子极弧系数选取的规则;同时分析了绕组匝数等主要尺寸的选取的规则;最后,基于上述方法优化设计了一台实验样机,并通过有限元仿真及实验验证了整距绕组分块转子开关磁阻电机的电磁设计方法的正确性。 展开更多
关键词 开关磁阻电机 电磁设计 绕组 节距 转子 节段 开关磁阻电动机 航空航天环境
下载PDF
Design and Wind Tunnel Study of a Top-mounted Diverterless Inlet 被引量:18
4
作者 谭慧俊 郭荣伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期72-78,共7页
Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top... Combined with a UAV of the shape like Global Hawk, a new inlet is advanced to obtain high performance in both Radar Cross Section(RCS) and aerodynamic drag. Efforts are made to achieve this goal such as adopting a top-mounted inlet configuration, utilizing the diverterless technique and putting forward a new shape of entrance. A design method is brought forward and verified by wind tunnel tests. Results indicate: (1) Despite the negative effect of the front fuselage and the absence of the conventional boundary diverter, the performance of the top-mounted diverterless inlet advanced here(Ma:0.50-0.70, α:-4°-6°,σ>0.975) is equivalent to that of conventional S shaped inlet with diverter; (2) The integration of the inlet with the fuselage is realized by the utilization of a special inlet section and the diverterless technique, which disposes the whole inlet in the shield of the head of UAV, improving the drag characteristics and the stealthy performance of the aircraft; (3) The bump which is equal to the local boundary layer thickness in height can divert the boundary layer effectively. As a result, no obvious low total pressure zone is found at the outlet of the inlet; (4) According to the experimental results, negative angle of attack is favorable to the total pressure recovery and positive angle of attack is favorable to the total pressure distortion, while yaw brings bad effects on both; (5) The design of cowl lip is of great importance to the inlet performance at yaw, therefore, further improvement of the inlet performance will rely on the lip shapes of the cowl chosen. 展开更多
关键词 top-mounted inlet diverterless inlet unmanned air vehicle design wind tunnel test
下载PDF
Concept Design and Coupled Dynamic Response Analysis on 6-MW Spar-Type Floating Offshore Wind Turbine 被引量:6
5
作者 MENG Long ZHOU Tao +2 位作者 HE Yan-ping ZHAO Yong-sheng LIU Ya-dong 《China Ocean Engineering》 SCIE EI CSCD 2017年第5期567-577,共11页
Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed... Tower, Spar platform and mooring system are designed in the project based on a given 6-MW wind turbine. Under wind-induced only, wave-induced only and combined wind and wave induced loads, dynamic response is analyzed for a 6-MW Spar-type floating offshore wind turbine (FOWT) under operating conditions and parked conditions respectively. Comparison with a platform-fixed system (land-based system) ofa 6-MW wind turbine is carried out as well. Results demonstrate that the maximal out-of-plane deflection of the blade of a Spar-type system is 3.1% larger than that of a land-based system; the maximum response value of the nacelle acceleration is 215% larger for all the designed load cases being considered; the ultimate tower base fore-aft bending moment of the Spar-type system is 92% larger than that of the land-based system in all of the Design Load Cases (DLCs) being considered; the fluctuations of the mooring tension is mainly wave-induced, and the safety factor of the mooring tension is adequate for the 6-MW FOWT. The results can provide relevant modifications to the initial design for the Spar-type system, the detailed design and model basin test of the 6-MW Spar-type system. 展开更多
关键词 Spar-type floating offshore wind turbine concept design combined wind and wave loads coupled dynamicresponse
下载PDF
Design of Large-Scale Prestressing Bucket Foundation for Offshore Wind Turbines 被引量:25
6
作者 练继建 丁红岩 +1 位作者 张浦阳 于瑞 《Transactions of Tianjin University》 EI CAS 2012年第2期79-84,共6页
The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket fou... The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels. 展开更多
关键词 offshore wind power large-scale prestressing bucket foundation arc transition structural design
下载PDF
Functional design of wind turbine airfoils based on roughness sensitivity characteristics 被引量:4
7
作者 王旭东 Xia Hongjun 《High Technology Letters》 EI CAS 2014年第4期442-445,共4页
To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turb... To improve aerodynamic performance of wind turbine airfoils,the shape profile characteristic of the airfoil is investigated.Application of conformal transformation,one functional and integrated expression of wind turbine airfoils is presented.Using the boundary layer theory,the aerodynamic model with roughness of wind turbine airfoils is introduced by studying flow separation around the airfoil.Based on the shape expression and aerodynamic performance of airfoils,the function design of wind turbine airfoils is carried out that the maximum lift-drag ratio and low roughness sensitivity are designed objects.Three wind turbines airfoils with different thickness are gained which are used at tip part of blades.As an example,the aerodynamic performance of one designed airfoil with relative thickness of 15%is simulated in different conditions of clean surface,rough surface,laminar flow and turbulent flow.The comparison of aerodynamic performance between the designed airfoil and one popular NACA airfoil is completed which can verify the better performance of the designed airfoil and reliability of the designed method. 展开更多
关键词 wind turbine airfoils integrated expression lift-drag ratio roughness sensitivity function design
下载PDF
Preliminary Design Support by Integrating a Reliability Analysis for Wind Turbine 被引量:1
8
作者 Hamid Zaghar Mohammed Sallaou Ali Chaaba 《Energy and Power Engineering》 2012年第4期233-240,共8页
In the context of industrial competitiveness, taking into account the process design throughout the product life cycle is inevitable, from the expression of the need to recycle, the capitalization and knowledge manage... In the context of industrial competitiveness, taking into account the process design throughout the product life cycle is inevitable, from the expression of the need to recycle, the capitalization and knowledge management increasingly a target much sought after companies because of increased knowledge. Indeed, during the approval phase and use studies and scientific researches make have generated knowledge especially that concerning the reliability of system components. In this context, the capitalization and reuse of knowledge are necessary and have a particular interest in design and particularly in the preliminary design phase. Studies are already completed suggest a design process ranging from the need to solve the problem. At each phase of the process, structural characteristics are defined by the designer through the available knowledge already capitalized to make choice of component and their arrangement. This article proposes integrating the analysis of system reliability in this process. The objective is the use of knowledge in the vision safety and hazards of operating through the study of reliability and decision making for the selection of solution. 展开更多
关键词 PRELIMINARY design RELIABILITY wind TURBINE GEARBOX
下载PDF
Numerical study on optimal structural parameters of train wind barrier based on orthogonal design 被引量:1
9
作者 HAN Yan MI Li-hua +1 位作者 SHEN Lian CAI Chun-sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2706-2718,共13页
Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation rati... Wind barriers have attracted significant attention as an effective measure to ensure train safety under crosswinds.However,in past decades,the influence of structural parameters such as the height and ventilation ratio of wind barriers on the difference of the average pressure coefficient between the train windward and leeward surface(ΔCp)has not been fully investigated.To determine the influence of the interaction among the three factors,namely the wind barrier height(H),ventilation ratio(R),and distance to the train(D),twenty five numerical simulation cases with different structural parameters were considered based on an orthogonal design.The shear stress transfer(SST)k-ωturbulent model was employed to calculate the wind pressure coefficients,and the calculation accuracy was validated by using wind tunnel experiments.The results indicated that with an increase in R,ΔCp first decreased and then increased,andΔCp decreased while D increased.Moreover,with the increase in H,ΔCp first increased and then decreased.Therefore,these three factors must be considered during the installation of wind barriers.Furthermore,according to a range analysis(judging the relative importance of the three factors intuitively),the three factors were ranked in the following order:R>H>D.Based on a variance analysis,R was found to be of high significance toΔCp,followed by H,which was significant,whereas D had relatively insignificant influence.Finally,the optimal values of R and H were determined to be 20%and 110 mm,respectively.And when R=40%,H=85 mm,the train was relatively unsafe under these such conditions.The findings of this study provide significant guidance for the structural design of wind barriers. 展开更多
关键词 wind barrier ventilation ratio HEIGHT numerical simulation orthogonal design
下载PDF
Constraints Based Decision Support for Site-Specific Preliminary Design of Wind Turbines 被引量:1
10
作者 Abdelaziz Arbaoui Mohamed Asbik 《Energy and Power Engineering》 2010年第3期161-170,共10页
This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their act... This study presents a decision-support tool for preliminary design of a horizontal wind turbine system. The function of this tool is to assist the various actors in making decisions about choices inherent to their activities in the field of wind energy. Wind turbine cost and site characteristics are taken into account in the used models which are mainly based on the engineering knowledge. The present tool uses a constraint-modelling technique in combination with a CSP solver (numerical CSPs which are based on an arithmetic interval). In this way, it generates solutions and automatically performs the concept selection and costing of a given wind turbine. The data generated by the tool and required for decision making are: the quality index of solution (wind turbine), the amount of energy produced, the total cost of the wind turbine and the design variables which define the architecture of the wind turbine system. When applied to redesign a standard wind turbine in adequacy with a given site, the present tool proved both its ability to implement constraint modelling and its usefulness in conducting an appraisal. 展开更多
关键词 wind TURBINE DECISION Support Preliminary design Cost Modelling Constraint SATISFACTION Problem (CSP) Digital CSP SOLVER
下载PDF
Design and Experimentation of a 1 MW Horizontal Axis Wind Turbine 被引量:1
11
作者 Miguel Toledo Velázquez Marcelino Vega Del Carmen +2 位作者 Juan Abugaber Francis Luis A. Moreno Pacheco Guilibaldo Tolentino Eslava 《Journal of Power and Energy Engineering》 2014年第1期9-16,共8页
In this work was carried out the aerodynamics design of a 1 MW horizontal axis wind turbine by using blade element momentum theory (BEM). The generated design was scaled and built for testing purposes in the discharge... In this work was carried out the aerodynamics design of a 1 MW horizontal axis wind turbine by using blade element momentum theory (BEM). The generated design was scaled and built for testing purposes in the discharge of an axial flow fan of 80 cm in diameter. Strip theory was used for the aerodynamic performance evaluation. In the numerical calculations was conducted a comparative analysis of the performance curves adding increasingly correction factors to the original equation of ideal flow to reduce the error regarding real operating values got by the experimental tests. Correction factors introduced in the ideal flow equation were the tip loss factor and drag coefficient. BEM results showed good approximation using experimental data for the tip speed ratio less than design. The best approximation of the power coefficient calculation was for tip speed ratio less than 6. BEM method is a tool for practical calculation and can be used for the design and evaluation of wind turbines when the flow rate is not too turbulent and radial velocity components are negligible. 展开更多
关键词 wind Turbine design BET BEM TIP Speed Ratio TIP LOST Factor HAWT
下载PDF
Preliminary Design of a Submerged Support Structure for Floating Wind Turbines 被引量:1
12
作者 LE Conghuan ZHANG Jian +2 位作者 DING Hongyan ZHANG Puyang WANG Guilan 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第6期1265-1282,共18页
Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depth... Cost-effective floating wind turbines with efficient installations are highly desired in deep waters(>50 m).This paper presents a submerged floating offshore wind turbines(SFOWT)concept for intermediate water depths(50-200 m).The performance of SFOWTs can be improved through a judicious choice of configuration,pretension,and mooring line layout.Four SFOWTs with different configurations and a similar mass,named Cyl-4,Cub-4,Cyl-3,and Hex-3,were designed and analyzed.The responses of the four SFOWTs were predicted under operational condition and extreme condition.The results show that the four SFOWTs exhibited good performance under both conditions.The effect of platform configurations on power output was negligible under the operational condition.Under the extreme condition,among the four SFOWTs,the mean bending moments at the tower base were very close,while the maximum values differed by up to 21.5%,due to the configurations.The effect of wind-wave misalignment under the extreme condition was further analyzed.In general,the motion performances of the four-pontoon SFOWTs,Cyl-4 and Cub-4,were superior to those of the three-pontoon SFOWTs,Cyl-3 and Hex-3.Optimization studies of the mooring system were carried out on Cub-4 with different mooring line pretensions and four mooring layouts.The optimized Cub-4 could reduce the maximum motion responses in the surge,heave,and yaw by 97.7%,91.5%,and 98.7%,respectively. 展开更多
关键词 floating offshore wind turbine structure design dynamic response aero-hydro-servo-elastic coupled analysis
下载PDF
Influence of Waterside Buildings’ Layout on Wind Environment and the Relation with Design Based on a Case Study of the She Kou Residential District 被引量:1
13
作者 Lei Yu Yongyi Ye Lu Zhang 《Journal of Architectural Environment & Structural Engineering Research》 2021年第3期20-30,共11页
It is important to improve residential thermal comfort in the high dense cities,in which wind environment is crucial.Waterside buildings take an advantage of micro-hydrological-climate in summer that should be used to... It is important to improve residential thermal comfort in the high dense cities,in which wind environment is crucial.Waterside buildings take an advantage of micro-hydrological-climate in summer that should be used to enhance residential thermal comfort especially in the subtropical region.In order to propose design approaches according to the outdoor thermal comfort of the waterside residential,a case study of Shenzhen She Kou res­idential district has been made.It focused on various factors that could have influence on wind environment for improving thermal comfort.Using wind velocity ratio(ΔRi)criterion,factors of building development volume,building direction and layout pattern,open space arrangement etc.have been broadly explored using FLUENT simulation.To planning parameters,the Floor Area Ratio(FAR)is significantly influence wind environment,the smaller FAR is better.To the vertical layout of the buildings,multi-storey layout and multi-storey&sub high-rise mixed layout would provide better wind environment.To the horizontal layout,the determinant is better than the peripheral.Other factors such as the buildings’direction towards the road,buildings’height,and open space setting,have influence on wind environment yet.In general,the more benefit of design layout for wind breezing,the better wind environment it could get. 展开更多
关键词 Buildings’layout Waterside wind environment design approach
下载PDF
The Design of Stall-Regulated Wind Turbine Blade for a Maximum Annual Energy Output and Minimum Cost of Energy Based on a Specific Wind Statistic
14
作者 W. Sridech T. Chitsomboon 《Journal of Power and Energy Engineering》 2014年第6期10-21,共12页
The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard sta... The design of a stall-regulated wind turbine to achieve a maximum annual energy output is still a formidable task for engineers. The design could be carried out using an average wind speed together with a standard statistical distribution such as a Weibull with k = 2.0. In this study a more elaborated design will be attempted by also considering the statistical bias as a design criterion. The wind data used in this study were collected from three areas of the Lamtakong weather station in Nakhonratchasima Provice, the Khaokoh weather station in Phetchaboon and the Sirindhorn dam weather station in Ubonratchathani, Thailand. The objective is to design a best aerodynamic configurations for the blade (chord, twist and pitch) using the same airfoil as that of NREL Phase VI wind turbine. Such design is carried out at a design wind speed point. Wind turbine blades were optimized for both maximum annual energy production and minimum cost of energy using a method that take into account aerodynamic and structural considerations. The work will be carried out by the program “SuWiTStat” which was developed by the authors and based on BEM Theory (Blade Element Momentum). Another side issue is the credibility of the Weibull statistic in representing the real wind measurement. This study uses a regression analysis to determine this issue. 展开更多
关键词 Component wind TURBINE BLADE design ANNUAL Power Yield Local wind Statistic Cost of ENERGY
下载PDF
Design Wind Speed Evaluation Technique in Wind Turbine Installation Point by Using the Meteorological and CFD Models
15
作者 Takanori Uchida 《Journal of Flow Control, Measurement & Visualization》 2018年第3期168-184,共17页
It is highly important in Japan to choose a good site for wind turbines, because the spatial distribution of wind speed is quite complicated over steep complex terrain. We have been developing the unsteady numerical m... It is highly important in Japan to choose a good site for wind turbines, because the spatial distribution of wind speed is quite complicated over steep complex terrain. We have been developing the unsteady numerical model called the RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain). The RIAM-COMPACT is based on the LES (Large-Eddy Simulation). The object domain of the RIAM-COMPACT is from several m to several km, and can predict the airflow and gas diffusion over complex terrain with high precision. In the present paper, the design wind speed evaluation technique in wind turbine installation point by using the mesoscale meteorological model and RIAM-COMPACT CFD model was proposed. The design wind speed to be used for designing WTGs can be calculated by multiplying the ratio of the mean wind speed at the hub-height to the mean upper-air wind speed at the inflow boundary, i.e., the fractional increase of the mean hub-height wind speed, by the reduction ratio, R. The fractional increase of the mean hub-height wind speed was evaluated using the CFD simulation results. This method was proposed as Approach 1 in the present paper. A value of 61.9 m/s was obtained for the final design wind speed, Uh, in Approach 1. In the evaluation procedure of the design wind speed in Approach 2, neither the above-mentioned reduction rate, R, nor an upper-air wind speed of 1.7 Vo, where Vo is the reference wind speed, was used. Instead, the value of the maximum wind speed which was obtained from the typhoon simulation for each of the investigated wind directions was adopted. When the design wind speed was evaluated using the 50-year recurrence value, the design wind speed was 48.3 m/s. When a somewhat conservative safety factor was applied, that is, when the 100 year recurrence value was used instead, the design wind speed was 52.9 m/s. 展开更多
关键词 design wind SPEED Complex TERRAIN METEOROLOGICAL MODEL CFD MODEL
下载PDF
Improvement and Design of Transmitter Modifier Wind Cooling Protection for CINRAD/CB Weather Radar
16
作者 Shi Zheng Guan Wang +4 位作者 Xingyou Huang Chuanhai Miao Wanru Xing Simeng Chen Boshi Kang 《Journal of Geoscience and Environment Protection》 2018年第11期139-146,共8页
Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requiremen... Doppler weather radar has important applications in measuring the intrinsic factors of cloud, rainfall and various convective weather occurrences. Among them, CINRAD/CB Doppler weather radar is based on the requirements of the China Meteorological Administration and many units have been provided. The modulator is a critical part of the transmitter’s high voltage, where high voltage, high current, and energy conversion are concentrated. It is therefore necessary to redesign the transmitter modulator cooling system protection. This article describes the new design of hardware and software solutions. The fan is a DV5214/2N DC fan from Ebmpapst, Germany. The speed is up to 5000 rpm, the power is 18.5 W, and the single fan current is about 0.8 A. It is powered by 28 V. The protection board uses a DC/DC module to output a 5 V voltage and a 3.3 V voltage adjustment chip LM1117. The embedded web software is based on the TCP/IP protocol stack provided by MICROCHIP. After the cooling system is designed and installed in the radar station in Xi’an, China and other places, after long-term operation, the comprehensive test shows that the system runs well. 展开更多
关键词 Improvement and design TRANSMITTER MODIFIER wind COOLING Protection CINRAD/CB Weather Radar
下载PDF
A Case Study on Optimization of Urban Design Base on Wind Environment Simulation
17
作者 Yuelang Gan Ying Wang 《Journal of Civil Engineering and Architecture》 2016年第8期870-880,共11页
Wind environment simulation of a commercial district in Baise city of Guangxi Province, China, is carried out in the design phase. The results are analyzed and based on the evaluation standard for greening building of... Wind environment simulation of a commercial district in Baise city of Guangxi Province, China, is carried out in the design phase. The results are analyzed and based on the evaluation standard for greening building of China. The simulation method is discussed in detail, and some suggestions for wind environment optimization are put forward, which might be helpful for similar research. 展开更多
关键词 wind environment environment optimization urban design.
下载PDF
Urban-Design Process with Snow and Wind Simulations: A Study on the Kitami City Hall
18
作者 Norihiro Watanabe Tsuyoshi Setoguchi +2 位作者 Shota Yokoyama Zhiming Guo Takuya Tsutsumi 《Journal of Civil Engineering and Architecture》 2017年第2期107-120,共14页
Regional climatic conditions should be considered while designing urban development plans, with special attention to the impact of snowfall on public spaces in cities with harsh winters. The Kitami-city-hall-renewal p... Regional climatic conditions should be considered while designing urban development plans, with special attention to the impact of snowfall on public spaces in cities with harsh winters. The Kitami-city-hall-renewal project in Hokkaido, Japan was studied as an environmental assessment of snow drifting. Assessments of the two site plans proposed during the architectural planning process (A-type and B-type) were conducted in terms of the following three items: (1) The two site plans indicate snow-drifting problems around the main entrance; (2) More number of local snowdrifts on the main-street sidewalks were suggested in the B-type design; (3) Less number of snowdrifts in the parking area beside the railroad were indicated in the A-type design. These results were reflected in the architectural planning process. On the basis of this study, a desirable design process incorporating environmental assessments has been identified for cities with harsh winters. 展开更多
关键词 Winter cities snow simulations wind tunnel urban design environmental assessments.
下载PDF
Numerical Analysis of Natural Smoke Ventilation Design System under External Wind Effect in Factory Compartment
19
作者 Chen-Wei Chiu Yi-Hong Chang Yi-Liang Shu 《Journal of Civil Engineering and Architecture》 2015年第12期1474-1482,共9页
This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using ... This study applied the numerical simulator tool FDS (fire dynamics simulator), Version 5.53, and focused on the simulation of the natural smoke flow ventilation design system, an innovative ventilation design using the parallel processing technology MPI (message passing interface). The design was then compared with the exhaust efficiency of a typical natural smoke vent. The natural smoke flow ventilation design system was located at the top of the factory, where smoke streams effectively converged. Therefore, the source of fire was designed to be 2 MW, which has a better exhaust efficiency than typical natural smoke vent with same area. The simulation discovered that the exhaust efficiency of the natural smoke ventilation design systems is higher than that of typical natural smoke vent with 2 times the opening area and that was not affected by external wind speed, Instead, external wind speed can help to enhance the exhaust efficiency. Smoke exhaust of typical natural smoke vents was affected by external wind speed, even leading them to become air inlets which would disturb the flow of air indoors, leading to smoke accumulation within the factory. 展开更多
关键词 FDS MPI natural smoke flow ventilation design system wind effect.
下载PDF
Optimization Design of Open Spaces Based on Wind Tunnel and CFD Simulation: Case Study of a Street Canyon in Northern China
20
作者 Zhiming Guo Tsuyoshi Setoguchi +1 位作者 Norihiro Watanabe Takuya Tsutsumi 《Journal of Civil Engineering and Architecture》 2017年第10期897-914,共18页
Airflow in open spaces can significantly affect spatial quality. Therefore, according to the type of building structures, the airflow also has different forms. Studies have been conducted on the relation between airfl... Airflow in open spaces can significantly affect spatial quality. Therefore, according to the type of building structures, the airflow also has different forms. Studies have been conducted on the relation between airflow and pedestrian comfort; however, only few of them have focused on comprehensive urban planning that considers different weather conditions and people's ability to adapt. This research focuses on the differences in wind conditions caused by different spatial forms in different seasons. On the basis of a field survey in both summer and winter in a public open space, evaluation standards developed from environmental meteorological data and public feedback were used to evaluate simulation results. Next, several assumptions about canyon orientation and building types were proposed. Wind tunnel and CFD (computational fluid dynamics) simulations were conducted to evaluate the assumptions. The results showed that the canyon orientation significantly affected overall wind conditions and different building structures affected airflow. This research also provides a method to evaluate urban areas that have complicated wind environments. 展开更多
关键词 Urban form outdoor comfort open space wind tunnel simulation optimization design.
下载PDF
上一页 1 2 153 下一页 到第
使用帮助 返回顶部