期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Techno-economic Analysis of Wind Curtailment/Hydrogen Production/Fuel Cell Vehicle System with High Wind Penetration in China 被引量:5
1
作者 Guowei Cai Lingguo Kong 《CSEE Journal of Power and Energy Systems》 SCIE 2017年第1期44-52,共9页
Wind curtailment/hydrogen production/fuel cell vehicle system(WCHPFCVS)is the use of curtailment to electrolyze water to produce hydrogen,which then provides energy for hydrogen fuel cell vehicles.In this paper,a tech... Wind curtailment/hydrogen production/fuel cell vehicle system(WCHPFCVS)is the use of curtailment to electrolyze water to produce hydrogen,which then provides energy for hydrogen fuel cell vehicles.In this paper,a techno-economic analysis of WCHPFCVS is proposed using the HOMER software.Large-scale wind power penetration is expected to lead to serious wind curtailment,and therefore,the hydrogen fuel cell vehicle will play an important role in future renewable energy storage,energy internet sharing,and electric transport areas.A system model of wind curtailment/hydrogen production/fuel cell vehicle is presented and analyzed using HOMER software to optimize the capacity and cost of the system.An annual revenue and profit of the system is then calculated and analyzed for energy conservation,emissions reduction,and environmental benefits.A technoeconomical evaluation of the system when cost of producing hydrogen and hydrogen load(fuel cell vehicle quantities)changes is also presented,taking into consideration the future progress of the technology and its market development.Techno-economic analysis of WCHPFCVS is shown as an effective method through a case study using actual data of curtailment from a wind farm in Jilin province in northeast China. 展开更多
关键词 High wind penetration hydrogen production fuel cell vehicle techno-economic analysis
原文传递
Providing Frequency Support of Hydro-Pumped Storage to Taiwan Power System with Wind Power Integration
2
作者 Yuan-Kang Wu G. W. Chang +1 位作者 Bo-Yu Hsiao Li-Tso Chang 《Smart Grid and Renewable Energy》 2016年第4期131-141,共11页
The combination of wind and pumped storage is a useful method to compensate the fluctuation of wind power generation, which would exploit the abundant wind potential and increase wind power penetration. Taiwan Power C... The combination of wind and pumped storage is a useful method to compensate the fluctuation of wind power generation, which would exploit the abundant wind potential and increase wind power penetration. Taiwan Power Company (TPC) develops renewable energy actively in recent years. Moreover, TPC has started planning a high penetration wind power system and building offshore wind farms around the coast of Zhangbin, Yunlin and Penghu. The target of the offshore wind power installed capacity is up to 3 GW by 2025. However, the integration of the large scale of wind power would give huge challenges to the system operator because wind is randomly characterized. In this study, after high penetration wind power is integrated, the impacts of system frequency and the dispatch of conventional units will be discussed. Additionally, the hybrid system combing wind power with pumped-storage will be planning to reduce the effect of system frequency. 展开更多
关键词 High penetration wind Power Large-Scale Offshore wind Farm Pumped-Storage Hybrid System
下载PDF
Design of a Fixed-Order Robust Controller to Damp Inter-Area Oscillations in Power Systems 被引量:1
3
作者 Abdlmnam Abdlrahem Parimal Saraf +3 位作者 Karthikeyan Balasubramaniam Ramtain Hadidi Alireza Karimi Elham Makram 《Journal of Power and Energy Engineering》 2016年第3期61-70,共10页
This paper presents the design of a robust fixed-order H<sub>&infin;</sub> controller to damp out the inter-area oscillations and to enhance the stability of the power system. The proposed H<sub>... This paper presents the design of a robust fixed-order H<sub>&infin;</sub> controller to damp out the inter-area oscillations and to enhance the stability of the power system. The proposed H<sub>&infin;</sub> approach is based on shaping the open-loop transfer function in the Nyquist diagram through minimizing the quadratic error between the actual and the desired open loop transfer functions in the frequency domain under linear constraints that guarantee robustness and stability. The proposed approach is robust with respect to multi-model uncertainty closed-loop sensitivity functions in the Nyquist diagram through the constraints on their infinity norm. The H<sub>&infin;</sub> constraints are linearized with the help of a desired open-loop transfer function. The controller is designed using the convex optimization techniques in which the difference between the open-loop transfer function and the desired one is minimized. The two-area four-machine test system is selected to evaluate the performance of the designed controller under different load conditions as well as different levels of wind penetrations. 展开更多
关键词 H Multi-Machine Power System Nyquist Diagram Robust Control wind penetrations SVC
下载PDF
A review of Danish integrated multi-energy system flexibility options for high wind power penetration 被引量:2
4
作者 Jiawei Wang Yi Zong +1 位作者 Shi You Chresten Træholt 《Clean Energy》 EI 2017年第1期23-35,共13页
The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 1... The current status of wind power and the energy infrastructure in Denmark is reviewed in this paper.The reasons for why Denmark is a world leader in wind power are outlined.The Danish government is aiming to achieve 100%renewable energy generation by 2050.A major challenge is balancing load and generation.In addition,the current and future solutions of enhancing wind power penetration through optimal use of cross-energy sector flexibility,so-called indirect electric energy storage options,are investigated.A conclusion is drawn with a summary of experiences and lessons learned in Denmark related to wind power development. 展开更多
关键词 energy system flexibility high wind power penetration integrated multi-energy system Danish wind energy
原文传递
Assessment and Enhancement of FRC of Power Systems Considering Thermal Power Dynamic Conditions
5
作者 Feng Hong Yalei Pang +4 位作者 Weiming Ji Lu Liang Fang Fang Junhong Hao Jizhen Liu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1371-1383,共13页
Frequency stability and security have been a vital challenge as large-scale renewable energy is integrated into power systems.In contrast,the proportion of traditional thermal power units decreases during the decarbon... Frequency stability and security have been a vital challenge as large-scale renewable energy is integrated into power systems.In contrast,the proportion of traditional thermal power units decreases during the decarbonization transformation process,resulting in poor frequency support.This paper aims to explore the potential of frequency regulation support,dynamic assessment,and capacity promotion of thermal power plants in the transition period.Considering the dynamic characteristics of the main steam working fluid under different working conditions,a nonlinear observer is constructed by extracting the main steam pressure and valve opening degree parameters.The real-time frequency modulation capacity of thermal power units can provide a dynamic state for the power grid.A dynamic adaptive modification for primary frequency control(PFC)of power systems,including wind power and thermal power,is proposed and improved.The power dynamic allocation factor is adaptively optimized by predicting the speed droop ratio,and the frequency modulation capability of the system is improved by more than 11%under extreme conditions.Finally,through the Monte Carlo simulation of unit states of the system under various working conditions,the promotion of the frequency regulation capacity with high wind power penetration(WPP)is verified. 展开更多
关键词 Dynamic evaluation frequency regulation power system predictive modeling wind penetration
原文传递
Stochastic Dynamic Economic Dispatch of Wind-integrated Electricity and Natural Gas Systems Considering Security Risk Constraints 被引量:11
6
作者 Zexing Chen Gelan Zhu +4 位作者 Yongjun Zhang Tianyao Ji Ziwen Liu Xiaoming Lin Zexiang Cai 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期324-334,共11页
As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which of... As the proportion of wind power generation increases in power systems,it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model.The power-to-gas technology,which offers a new approach to accommodate surplus wind power,is an excellent way to solve the former.Hence,this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems(IEGSs).To solve the latter,on one hand,a new indicator,the scale factor of wind power integration,is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power;on the other hand,for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security,security risk constraints are established for the IEGS by the conditional value-at-risk method.By considering these two aspects,an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established,and GUROBI obtained from GAMS is used for the solution.Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model. 展开更多
关键词 High wind power penetration integrated electricity and natural gas system(IEGS) power-to-gas security risk constraint
原文传递
Innovated Inertia Control of DFIG with Dynamic Rotor Speed Recovery 被引量:1
7
作者 Huanjing Lao Li Zhang +1 位作者 Tong Zhao Liang Zou 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第5期1417-1427,共11页
High wind power penetration(WPP)is challenging system frequency stability.As a countermeasure,virtual inertia controls are introduced,utilizing kinetic energy(KE)stored in wind turbine generators(WTGs)for frequency re... High wind power penetration(WPP)is challenging system frequency stability.As a countermeasure,virtual inertia controls are introduced,utilizing kinetic energy(KE)stored in wind turbine generators(WTGs)for frequency regulation.Without restoration,generation efficiency of WTGs will be degraded after inertia contribution.To counter this issue,we propose an inertia control scheme of a doubly fed induction generator(DFIG),aiming at achieving dynamic inertia recovery regarding both KE and DC link energy.An asymmetrical droop control,referred to as the rate of change of frequency(RoCoF),is proposed for KE management.The upper boundary of droop gain is extended to give full play to converters and is revised,considering the system frequency state,to counter positive feedback issues induced by reversible gain regulation,which is restricted by KE to ensure stable operations as well.The inertial DC energy needed to cooperate with KE control regarding countering small fluctuations,is improved with an orderly recovery behavior.Case studies are conducted under dynamic wind conditions and the results indicate that with our proposed scheme,the ability of dynamic inertia recovery can be obtained,bringing DFIG higher generation efficiency and more adequate operation margin for sustained regulation.Essentially,the inertial frequency response and fluctuation suppression ability is well maintained. 展开更多
关键词 Doubly fed induction generator(DFIG) dynamic rotor speed recovery frequency regulation generation efficiency high wind power penetration.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部