With increasing penetration of wind energy,the variability and uncertainty of wind resources have become important factors for power systems operation.In particular,an effective method is required for identifying the ...With increasing penetration of wind energy,the variability and uncertainty of wind resources have become important factors for power systems operation.In particular,an effective method is required for identifying the stochastic range of wind power output,in order to better guide the operational security of power systems.This paper proposes a metric to determine accurate wind power output ranges so that the probability of actual wind power outputs being out of the range would be less than a small pre-defined value.A mixed-integer linear programming(MILP)based chance-constrained optimization model is proposed for efficiently determining optimal wind power output ranges,which are quantified via maximum and the minimum wind generation levels with respect to a certain time interval.The derived wind power range is then used to construct dynamic uncertainty intervals for the robust securityconstrained unit commitment(SCUC)model.A comparison with the deterministic SCUC model and the traditional robust SCUC model with presumed static uncertainty interval demonstrates that the proposed approach can offer more accurate wind power variabilities(i.e.,different variability degrees with respect to different wind power output levels at different time periods).The proposed approach is also shown to offer more effective and robust SCUC solutions,guaranteeing operational security and economics of power systems.Numerical case studies on a 6-bus system and the modified IEEE 118-bus system with realworld wind power data illustrate the effectiveness of the proposed approach.展开更多
-Theoretical form of equilibrium range is given on the basis of the wind wave frequency spectra proposed by Wenel al. (1988a,b,c, 1989a,b). The effects of peakness factor and water depth are discussed. In the case of ...-Theoretical form of equilibrium range is given on the basis of the wind wave frequency spectra proposed by Wenel al. (1988a,b,c, 1989a,b). The effects of peakness factor and water depth are discussed. In the case of deep water the e-quilibrium range is reduced to the form first proposed by Toba (1973) and the coefficient of the formula is shown to be the function of nondimensional fetch or peak frequency. Results of the present paper have been verified through field data.展开更多
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f...The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).展开更多
基金supported in part by the U.S.National Science Foundation under Grant ECCS-1254310.
文摘With increasing penetration of wind energy,the variability and uncertainty of wind resources have become important factors for power systems operation.In particular,an effective method is required for identifying the stochastic range of wind power output,in order to better guide the operational security of power systems.This paper proposes a metric to determine accurate wind power output ranges so that the probability of actual wind power outputs being out of the range would be less than a small pre-defined value.A mixed-integer linear programming(MILP)based chance-constrained optimization model is proposed for efficiently determining optimal wind power output ranges,which are quantified via maximum and the minimum wind generation levels with respect to a certain time interval.The derived wind power range is then used to construct dynamic uncertainty intervals for the robust securityconstrained unit commitment(SCUC)model.A comparison with the deterministic SCUC model and the traditional robust SCUC model with presumed static uncertainty interval demonstrates that the proposed approach can offer more accurate wind power variabilities(i.e.,different variability degrees with respect to different wind power output levels at different time periods).The proposed approach is also shown to offer more effective and robust SCUC solutions,guaranteeing operational security and economics of power systems.Numerical case studies on a 6-bus system and the modified IEEE 118-bus system with realworld wind power data illustrate the effectiveness of the proposed approach.
文摘-Theoretical form of equilibrium range is given on the basis of the wind wave frequency spectra proposed by Wenel al. (1988a,b,c, 1989a,b). The effects of peakness factor and water depth are discussed. In the case of deep water the e-quilibrium range is reduced to the form first proposed by Toba (1973) and the coefficient of the formula is shown to be the function of nondimensional fetch or peak frequency. Results of the present paper have been verified through field data.
基金Project(U1334203) supported by the National Natural Science Foundation of China
文摘The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).