In the present study,the performance of the GRAPES model in wind simulation over south China was assessed.The simulations were evaluated by using surface observations and two sounding stations in south China.The resul...In the present study,the performance of the GRAPES model in wind simulation over south China was assessed.The simulations were evaluated by using surface observations and two sounding stations in south China.The results show that the GRAPES model could provide a reliable simulation of the distribution and diurnal variation of the wind.It showed a generally overestimated southerly wind speed especially over the Pearl River Delta region and the south of Jiangxi Province as well as the coastal region over south China.GRAPES also exhibited a large number of stations with the opposite surface wind directions over the east of Guangxi and the south of Jiangxi during the nocturnalto-morning period,as well as an overall overestimation of surface wind over the coastal regions during the afternoon.Although GRAPES could simulate the general evolutional characteristics of vertical wind profile,it underestimated wind speed above 900 hPa and overestimated wind speed below 900 hPa.Though the parameterization scheme of gravity wave drag proved to be an effective method to alleviate the systematic deviation of wind simulation,GRAPES still exhibited large errors in wind simulation,especially in the lower and upper troposphere.展开更多
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely di...The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.展开更多
Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovati...Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovative form of the POD based on cross power spectral density matrices. By introducing a discretizing scheme, the CPOD-based spectral representation method is obtained for use in stochastic simulation. Moreover, some criteria are proposed that allow the truncation order of CPOD to be conveniently determined. A numerical example to illustrate the application of the proposed method for the simulation of a wind velocity field is provided.展开更多
Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer rese...Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.展开更多
Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy wea...Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence ofdesertification. As a major form of freeze-thaw erosion, freeze-thaw and wind erosion is displayed prominently on the Qinghai-Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze-thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze-thaw cycles, water content in the freezing-thawing process, and the difference in freeze-thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze-thaw and wind erosion in the Qinghai-Tibet Plateau is the damage to the soil structure by repeated, fierce freeze-thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze-thaw and wind erosion in the Qinghai-Tibet Plateau, and provide a scientific basis for freeze-thaw desertification control in the plateau.展开更多
Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochas...Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochastic(LS)models describe stochastic wind behaviors,such models assume that wind velocities follow Gaussian distributions.However,measured surface-layer wind velocities show a strong skewness and kurtosis.This paper presents an improved model,a non-Gaussian LS model,which incorporates controllable non-Gaussian random variables to simulate the targeted non-Gaussian velocity distribution with more accurate skewness and kurtosis.Wind velocity statistics generated by the non-Gaussian model are evaluated by using the field data from the Cooperative Atmospheric Surface Exchange Study,October 1999 experimental dataset and comparing the data with statistics from the original Gaussian model.Results show that the non-Gaussian model improves the wind trajectory simulation by stably producing precise skewness and kurtosis in simulated wind velocities without sacrificing other features of the traditional Gaussian LS model,such as the accuracy in the mean and variance of simulated velocities.This improvement also leads to better accuracy in friction velocity(i.e.,a coupling of three-dimensional velocities).The model can also accommodate various non-Gaussian wind fields and a wide range of skewness–kurtosis combinations.Moreover,improved skewness and kurtosis in the simulated velocity will result in a significantly different dispersion for wind/particle simulations.Thus,the non-Gaussian model is worth applying to wind field simulation in the surface layer.展开更多
As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed,...As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed, direction and friction are introduced in this study to construct the asymmetric strengthening of the QuikSCAT wind field. Then by adopting a technology of four-dimensional data assimilation, an experiment that includes both the assimilation and forecasting phases is designed to simulate Typhoon Rananim numerically. The results show that with model constraints and adjustment, this technology can incorporate the QuikSCAT wind data to the entire column of the model atmosphere, improve greatly the simulating effects of the whole-column wind, pressure field and the track as well as the simulated typhoon intensity covered by the forecast phase, and work positively for the forecasting of landfall locations.展开更多
The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FL...The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.展开更多
The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity ...The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity field where the spatial structure is located is assumed to be homogeneous. The wind’s power spectral density is divided into frequency spectral function and coherency function and the spectral functions are transformed as the superposition coefficients. The wavelet analysis has excellent localized characters in both time and frequency domains, which not only makes wind velocity time series analysis more accurate, but also can focus on any detail of the objective signal series. The discrete wavelet transformation was adopted to decompose and reconstruct the discrete wind velocity time series. The stability of wavelet analysis for the wind velocity time series was also proved.展开更多
With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed b...With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters.展开更多
Airflow in open spaces can significantly affect spatial quality. Therefore, according to the type of building structures, the airflow also has different forms. Studies have been conducted on the relation between airfl...Airflow in open spaces can significantly affect spatial quality. Therefore, according to the type of building structures, the airflow also has different forms. Studies have been conducted on the relation between airflow and pedestrian comfort; however, only few of them have focused on comprehensive urban planning that considers different weather conditions and people's ability to adapt. This research focuses on the differences in wind conditions caused by different spatial forms in different seasons. On the basis of a field survey in both summer and winter in a public open space, evaluation standards developed from environmental meteorological data and public feedback were used to evaluate simulation results. Next, several assumptions about canyon orientation and building types were proposed. Wind tunnel and CFD (computational fluid dynamics) simulations were conducted to evaluate the assumptions. The results showed that the canyon orientation significantly affected overall wind conditions and different building structures affected airflow. This research also provides a method to evaluate urban areas that have complicated wind environments.展开更多
The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the sur...The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.展开更多
In this paper further mathematical analysis on 'correlation transfer technique' by Polge el al. is carried out, the tenable conditions and the extent of suitability for the said method are proved as well. In c...In this paper further mathematical analysis on 'correlation transfer technique' by Polge el al. is carried out, the tenable conditions and the extent of suitability for the said method are proved as well. In consideration of the influence of skewness of the sea surface elevation on spectral shape, a 'quasi-correlation transfer techique' is developed by the modification of the simulated target spectrum. Meanwhile, the numerical simulation of the non-Gaussian process of wind waves is carried out in view of the two conditions of the surface elevation probability distribution and the spectrum. By using its simulated results, the influence of skewness of the sea surface elevation on two parameters in the distribution of wave heights (which had been fitted by using the Weibull distribution) is analysed. The 'quasi- correlation tranfer technique' is verified and compared with the selection wave data observed in the Jiaozhou Bay in the period of 1980 to 1981. Results make clear (hat, as far as the statistical distribution of the wave heights and the distribution of the maximum (minimum) values of the sea surface elevation are concerned, the said method is obviously superior to the conventional mothed of the linear wave superposition, and that the simulated results are closer to the observation data.展开更多
The results of the tropical Pacific response to the sudden onset of the equatorial wind stress anomalies are discussed. The ocean model is a barotropic, non-linearized one that includes reduced-gravity and an equation...The results of the tropical Pacific response to the sudden onset of the equatorial wind stress anomalies are discussed. The ocean model is a barotropic, non-linearized one that includes reduced-gravity and an equation for the temperature of the ocean mixed-layer. The experiments are based on a state of equilibrium reached through a long running under the action of annual mean wind stress. There are two kinds of westward wind intensity regions: the whole tropical Pacific and the western tropical Pacific, which are all between latitude 6. 8癗 and 6. 8癝.In these cases, the results show that the positive sea surface temperature (SST) anomalies in the Eastern Pacific and the negative SST anomalies in the Western Pacific are produced, and the positive SST anomalies propagate eastward, just as those observed during the actual El Nino phenomena. The propagations of the Kelvin waves and Rossby waves in the ocean are discussed.Another experiment is also carried out in simulating the process of the decay of El Nino event after the weakened Equatorial Pacific eastern winds returned to normal. The results are similar to the observations, too.展开更多
To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models...To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.展开更多
A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wi...A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.展开更多
The authors seek, through tests on simulated sand samples in a wind tunnel and analysis of minerals combination and trace elements, to discover the environmental implications of flying-up, falling-down and concentrati...The authors seek, through tests on simulated sand samples in a wind tunnel and analysis of minerals combination and trace elements, to discover the environmental implications of flying-up, falling-down and concentration variation as a function of natural wind speed and direction, distance of movement, range and extent of influence on the atmospheric environment, of micro-granular components on the ground surface in the Keerqin desert area in northwest Liaoning Province of China.展开更多
We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experimen...We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.展开更多
China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit...China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several activities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment(SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.展开更多
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
基金National Key R&D Program of China(2018YFC1507602)National Natural Science Foundation of China(41505084,41875079)+1 种基金Guangzhou Science and Technology Project(201804020038)Guangdong Province Public Welfare Research and Capacity Construction Project(2017B020218003)
文摘In the present study,the performance of the GRAPES model in wind simulation over south China was assessed.The simulations were evaluated by using surface observations and two sounding stations in south China.The results show that the GRAPES model could provide a reliable simulation of the distribution and diurnal variation of the wind.It showed a generally overestimated southerly wind speed especially over the Pearl River Delta region and the south of Jiangxi Province as well as the coastal region over south China.GRAPES also exhibited a large number of stations with the opposite surface wind directions over the east of Guangxi and the south of Jiangxi during the nocturnalto-morning period,as well as an overall overestimation of surface wind over the coastal regions during the afternoon.Although GRAPES could simulate the general evolutional characteristics of vertical wind profile,it underestimated wind speed above 900 hPa and overestimated wind speed below 900 hPa.Though the parameterization scheme of gravity wave drag proved to be an effective method to alleviate the systematic deviation of wind simulation,GRAPES still exhibited large errors in wind simulation,especially in the lower and upper troposphere.
基金National Natural Science Foundation of China, No.40671186 No.40271012
文摘The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.
基金Research Fund for Communications in Western China Under Grant No. 200431800028
文摘Proper Orthogonal Decomposition (POD) provides a powerful modal transformation tool for stochastic dynamics. In this paper, coherency matrix-based proper orthogonal decomposition (CPOD) is presented as an innovative form of the POD based on cross power spectral density matrices. By introducing a discretizing scheme, the CPOD-based spectral representation method is obtained for use in stochastic simulation. Moreover, some criteria are proposed that allow the truncation order of CPOD to be conveniently determined. A numerical example to illustrate the application of the proposed method for the simulation of a wind velocity field is provided.
基金Under the auspices of National Natural Science Foundation of China (No. 40930741, 41071009, 41001005)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-329)
文摘Sand/dust storms are some of the main hazards in arid and semi-arid zones. These storms also influence global environmental changes. By field observations, empirical statistics, and numerical simulations, pioneer researchers on these natural events have concluded the existence of a positive relationship between thermodynamic effects and sand/dust storms. Thermodynamic effects induce an unsteady stratified atmosphere to influence the process of these storms. However, studies on the relationship of thermodynamic effects with particles (i.e., sand and dust) are limited. In this article, wind tunnel with heating was used to simulate the quantitative relationship between thermodynamic effects and particle movement on different surfaces. Compared with the cold state, the threshold wind velocity of particles is found to be significantly decrease under the hot state. The largest decrease percentage exceedes 9% on fine and coarse sand surfaces. The wind velocity also has a three-power function in the sand transport rate under the hot state with increased sand transport. Thermodynamic effects are stronger on loose surfaces and fine particles, but weaker on compacted surfaces and coarse particles.
基金funded by the National Natural Science Foundation of China(Grant No.41401611)the China Postdoctoral Science Foundation(Grant Nos.2014M560817 and 2015T81069)+1 种基金one of Special Fund for Forest Scientific Research in the Public Welfare(201504401)the Science and Technology Program of Gansu Province(Grant No.145RJZA118)
文摘Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence ofdesertification. As a major form of freeze-thaw erosion, freeze-thaw and wind erosion is displayed prominently on the Qinghai-Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze-thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze-thaw cycles, water content in the freezing-thawing process, and the difference in freeze-thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze-thaw and wind erosion in the Qinghai-Tibet Plateau is the damage to the soil structure by repeated, fierce freeze-thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze-thaw and wind erosion in the Qinghai-Tibet Plateau, and provide a scientific basis for freeze-thaw desertification control in the plateau.
基金financial support for this research from a USDA-AFRI Foundational Grant (Grant No. 2012-67013-19687)from the Illinois State Water Survey at the University of Illinois at Urbana—Champaign
文摘Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochastic(LS)models describe stochastic wind behaviors,such models assume that wind velocities follow Gaussian distributions.However,measured surface-layer wind velocities show a strong skewness and kurtosis.This paper presents an improved model,a non-Gaussian LS model,which incorporates controllable non-Gaussian random variables to simulate the targeted non-Gaussian velocity distribution with more accurate skewness and kurtosis.Wind velocity statistics generated by the non-Gaussian model are evaluated by using the field data from the Cooperative Atmospheric Surface Exchange Study,October 1999 experimental dataset and comparing the data with statistics from the original Gaussian model.Results show that the non-Gaussian model improves the wind trajectory simulation by stably producing precise skewness and kurtosis in simulated wind velocities without sacrificing other features of the traditional Gaussian LS model,such as the accuracy in the mean and variance of simulated velocities.This improvement also leads to better accuracy in friction velocity(i.e.,a coupling of three-dimensional velocities).The model can also accommodate various non-Gaussian wind fields and a wide range of skewness–kurtosis combinations.Moreover,improved skewness and kurtosis in the simulated velocity will result in a significantly different dispersion for wind/particle simulations.Thus,the non-Gaussian model is worth applying to wind field simulation in the surface layer.
基金National Key Fundamental Research and Development Plan of China (2004CB418301)Natural Science Foundation of China (40830958)
文摘As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed, direction and friction are introduced in this study to construct the asymmetric strengthening of the QuikSCAT wind field. Then by adopting a technology of four-dimensional data assimilation, an experiment that includes both the assimilation and forecasting phases is designed to simulate Typhoon Rananim numerically. The results show that with model constraints and adjustment, this technology can incorporate the QuikSCAT wind data to the entire column of the model atmosphere, improve greatly the simulating effects of the whole-column wind, pressure field and the track as well as the simulated typhoon intensity covered by the forecast phase, and work positively for the forecasting of landfall locations.
基金supported by the National Natural Science Foundation of China(40805004, 40705039 and 90715031)the "Mini-projecton detailed survey and evaluation of wind energy resources"supported by National Climate Center of Chinese Meteoro-logical Administration (CWERA2010002)
文摘The state-of-art Computational Fluid Dynamics (CFD) codes FLUENT is applied in a fine-scale simulation of the wind field over a complex terrain. Several numerical tests are performed to validate the capability of FLUENT on describing the wind field details over a complex terrain. The results of the numerical tests show that FLUENT can simulate the wind field over extremely complex terrain, which cannot be simulated by mesoscale models. The reason why FLUENT can cope with extremely complex terrain, which can not be coped with by mesoscale models, relies on some particular techniques adopted by FLUENT, such as computer-aided design (CAD) technique, unstructured grid technique and finite volume method. Compared with mesoscale models, FLUENT can describe terrain in much more accurate details and can provide wind simulation results with higher resolution and more accuracy.
文摘The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity field where the spatial structure is located is assumed to be homogeneous. The wind’s power spectral density is divided into frequency spectral function and coherency function and the spectral functions are transformed as the superposition coefficients. The wavelet analysis has excellent localized characters in both time and frequency domains, which not only makes wind velocity time series analysis more accurate, but also can focus on any detail of the objective signal series. The discrete wavelet transformation was adopted to decompose and reconstruct the discrete wind velocity time series. The stability of wavelet analysis for the wind velocity time series was also proved.
基金Project for Popularization of Advanced Meteorological Technology for 2006, China Meteorological Administration (CMATG2006M41)
文摘With high resolution (1 kin), the distribution of wind energy resources in Hainan province and over its offshore waters is numerically simulated by using the Wind Energy Simulation Toolkit (WEST) model developed by Meteorological Research Branch of Environment Canada. Compared with observations from eight coastal anemometric towers and 18 existing stations in the province, the simulations show good reproduction of the real distribution of wind resources in Hainan and over its offshore waters, with the relative error of annual mean wind speed being no more than 9% at the 70-m level. Moreover, based on the simulated results of WEST grids that are closest to where the eight wind towers are located, the annual mean wind speeds are further estimated by using the Danish software Wasp (Wind Atlas Analysis and Application Program). The estimated results are then compared with the observations from the towers. It shows that the relative error is also less than 9%. Therefore, WEST and WEST+WAsP will be useful tools for the assessment of wind energy resources in high resolution and selection of wind farm sites in Hainan province and over its offshore waters.
文摘Airflow in open spaces can significantly affect spatial quality. Therefore, according to the type of building structures, the airflow also has different forms. Studies have been conducted on the relation between airflow and pedestrian comfort; however, only few of them have focused on comprehensive urban planning that considers different weather conditions and people's ability to adapt. This research focuses on the differences in wind conditions caused by different spatial forms in different seasons. On the basis of a field survey in both summer and winter in a public open space, evaluation standards developed from environmental meteorological data and public feedback were used to evaluate simulation results. Next, several assumptions about canyon orientation and building types were proposed. Wind tunnel and CFD (computational fluid dynamics) simulations were conducted to evaluate the assumptions. The results showed that the canyon orientation significantly affected overall wind conditions and different building structures affected airflow. This research also provides a method to evaluate urban areas that have complicated wind environments.
文摘The wind tunnel simulations of wind loading on a solid structure of revolution with one smooth and five rough surfaces were conducted using wind tunnel tests. Timemean and fluctuating pressure distributions on the surface were obtained, and the relationships between the roughness Reynolds number and pressure distributions were analyzed and discussed. The results show that increasing the surface roughness can significantly affect the pressure distribution, and the roughness Reynolds numbers play an important role in the change of flow patterns. The three flow patterns of subcritical, critical and supercritical flows can be classified based on the changing patterns of both the mean and the fluctuating pressure distributions. The present study suggests that the wind tunnel results obtained in the supercritical pattern reflect more closely those of full-scale solid structure of revolution at the designed wind speed.
文摘In this paper further mathematical analysis on 'correlation transfer technique' by Polge el al. is carried out, the tenable conditions and the extent of suitability for the said method are proved as well. In consideration of the influence of skewness of the sea surface elevation on spectral shape, a 'quasi-correlation transfer techique' is developed by the modification of the simulated target spectrum. Meanwhile, the numerical simulation of the non-Gaussian process of wind waves is carried out in view of the two conditions of the surface elevation probability distribution and the spectrum. By using its simulated results, the influence of skewness of the sea surface elevation on two parameters in the distribution of wave heights (which had been fitted by using the Weibull distribution) is analysed. The 'quasi- correlation tranfer technique' is verified and compared with the selection wave data observed in the Jiaozhou Bay in the period of 1980 to 1981. Results make clear (hat, as far as the statistical distribution of the wave heights and the distribution of the maximum (minimum) values of the sea surface elevation are concerned, the said method is obviously superior to the conventional mothed of the linear wave superposition, and that the simulated results are closer to the observation data.
文摘The results of the tropical Pacific response to the sudden onset of the equatorial wind stress anomalies are discussed. The ocean model is a barotropic, non-linearized one that includes reduced-gravity and an equation for the temperature of the ocean mixed-layer. The experiments are based on a state of equilibrium reached through a long running under the action of annual mean wind stress. There are two kinds of westward wind intensity regions: the whole tropical Pacific and the western tropical Pacific, which are all between latitude 6. 8癗 and 6. 8癝.In these cases, the results show that the positive sea surface temperature (SST) anomalies in the Eastern Pacific and the negative SST anomalies in the Western Pacific are produced, and the positive SST anomalies propagate eastward, just as those observed during the actual El Nino phenomena. The propagations of the Kelvin waves and Rossby waves in the ocean are discussed.Another experiment is also carried out in simulating the process of the decay of El Nino event after the weakened Equatorial Pacific eastern winds returned to normal. The results are similar to the observations, too.
基金Project(2017T001-G)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(2017YFB1201204)supported by the National Key Research and Development Program of China+2 种基金Project(U1534206)supported by the National Natural Science Foundation of ChinaProject(2015CX006)supported by the Innovation-driven Plan in Central South University,ChinaProject(2017zzts521)supported by the Fundamental Research Funds for the Central Universities,China
文摘To improve the safety of trains running in an undesirable wind environment,a novel louver-type wind barrier is proposed and further studied in this research using a scaled wind tunnel simulation with 1:40 scale models.Based on the aerodynamic performance of the train-bridge system,the parameters of the louver-type wind barrier are optimized.Compared to the case without a wind barrier,it is apparent that the wind barrier improves the running safety of trains,since the maximum reduction of the moment coefficient of the train reaches 58%using the louver-type wind barrier,larger than that achieved with conventional wind barriers(fence-type and grid-type).A louver-type wind barrier has more blade layers,and the rotation angle of the adjustable blade of the louver-type wind barrier is 90–180°(which induces the flow towards the deck surface),which is more favorable for the aerodynamic performance of the train.Comparing the 60°,90°and 120°wind fairings of the louver-type wind barrier blade,the blunt fairing is disadvantageous to the operational safety of the train.
基金The National Science Foundation of China under Grant No.51378111the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-13-0128+2 种基金the Fok Ying-Tong Education Foundation for Young Teachersin the Higher Education Institutions of China under Grant No.142007the Fundamental Research Funds for the Central Universities under Grant No.2242012R30002the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering under Grant No.JSKL2011YB02
文摘A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.
文摘The authors seek, through tests on simulated sand samples in a wind tunnel and analysis of minerals combination and trace elements, to discover the environmental implications of flying-up, falling-down and concentration variation as a function of natural wind speed and direction, distance of movement, range and extent of influence on the atmospheric environment, of micro-granular components on the ground surface in the Keerqin desert area in northwest Liaoning Province of China.
基金support from the National Science Foundation (NSF) (Grants CBET-1133751 and CBET-1438099)the support from the National Key Technology Support Program of China (Grant 2015BAA06B04)Shanghai Natural Science Foundation (Grant 16ZR1417600)
文摘We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer(ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.
文摘China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several activities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment(SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.