Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar...Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind.展开更多
If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of s...If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.展开更多
For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emis...For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%.展开更多
文摘Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind.
文摘If two or more renewable energy sources are available in the same region, their complementary can be advantageous in a hybrid power system. Three indices are defined in this work for assessing the complementarity of solar and wind resources for energy production. Based on existing data of solar radiation and wind speed, these complementarity indices were calculated and represented in the form of maps for the state of Rio Grande do Sul, in southern Brazil. The results found suggest that there are some areas of the state where the use of hybrid wind-solar power systems could be more effective than single photovoltaic or wind systems.
文摘For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%.