The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in ...The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency.展开更多
Estimates of the palaeo subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and f...Estimates of the palaeo subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and forty undisturbed oriented aeolian loess samples were collected from Lanzhou, Linxia and Wudu areas for AMS measurements, which indicated the subaerial wind directions were not the same while the loess deposited. From the Early Pleistocene to Middle Pleistocene till Late Pleistocene, the wind direction experienced an anticlockwise rotation in the studied area. We suggested this change was related to the uplift of the Qinghai Xizang Plateau and the adjustment of current and landform effects.展开更多
基金Department of Transportation Technology of Construction Project,China(No.2013328225080)Natural Science Foundation of Liaoning Province,China(No.2015020121)the Fundamental Research Funds for the Central Universities,China(Nos.3132015087,3132014303)
文摘The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency.
文摘Estimates of the palaeo subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and forty undisturbed oriented aeolian loess samples were collected from Lanzhou, Linxia and Wudu areas for AMS measurements, which indicated the subaerial wind directions were not the same while the loess deposited. From the Early Pleistocene to Middle Pleistocene till Late Pleistocene, the wind direction experienced an anticlockwise rotation in the studied area. We suggested this change was related to the uplift of the Qinghai Xizang Plateau and the adjustment of current and landform effects.