Internal solitary wave(ISW)is often accompanied by huge energy transport,which will change the pore water pressure in the seabed.Based on the two-dimensional Biot consolidation theory,the excess pore water pressure in...Internal solitary wave(ISW)is often accompanied by huge energy transport,which will change the pore water pressure in the seabed.Based on the two-dimensional Biot consolidation theory,the excess pore water pressure in seabed was simulated,and the spatiotemporal distribution characteristics of excess pore water pressure was studied.As the parameters of both ISW and seabed can affect the excess pore water pressure,the distribution of pore water pressure showed both dissipation and phase lag.And parametric studies were done on these two phenomena.Due to influenced by the phase lag of excess pore water pressure,the penetration depth under the site of northern South China Sea with total water depth 327 m,induced by typical internal solitary wave increased by 26.19%,53.27%and 149.86%from T_(0)to T_(0.5)in sand silt,clayey silt and fine sand seabed,respectively.That means the effect of ISW on seabed will be underestimated if we only take into accout the penetration depth under ISW trough,especially for fine sand seabed.In addition,the concept of“amplitude-depth ratio”had been introduced to describe the influence of ISW on seabed dynamic response in the actual marine environment.In present study,it is negatively correlated with the excess pore water pressure,and an ISW with smaller amplitude-depth ratio can wide the range of lateral impacts.Our study results help understand the seabed damage induced by the interaction between ISW and seabed.展开更多
The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the struct...The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed.展开更多
基金The Natural Science Foundation of Jiangsu Province under contract No.BK20210527the Open Research Fund of Key Laboratory of Coastal Science and Integrated Management,Ministry of Natural Resources under contract No.2021COSIMQ002the National Natural Science Foundation of China under contract No.42107158.
文摘Internal solitary wave(ISW)is often accompanied by huge energy transport,which will change the pore water pressure in the seabed.Based on the two-dimensional Biot consolidation theory,the excess pore water pressure in seabed was simulated,and the spatiotemporal distribution characteristics of excess pore water pressure was studied.As the parameters of both ISW and seabed can affect the excess pore water pressure,the distribution of pore water pressure showed both dissipation and phase lag.And parametric studies were done on these two phenomena.Due to influenced by the phase lag of excess pore water pressure,the penetration depth under the site of northern South China Sea with total water depth 327 m,induced by typical internal solitary wave increased by 26.19%,53.27%and 149.86%from T_(0)to T_(0.5)in sand silt,clayey silt and fine sand seabed,respectively.That means the effect of ISW on seabed will be underestimated if we only take into accout the penetration depth under ISW trough,especially for fine sand seabed.In addition,the concept of“amplitude-depth ratio”had been introduced to describe the influence of ISW on seabed dynamic response in the actual marine environment.In present study,it is negatively correlated with the excess pore water pressure,and an ISW with smaller amplitude-depth ratio can wide the range of lateral impacts.Our study results help understand the seabed damage induced by the interaction between ISW and seabed.
基金the Key Project of Fund of Science and Technology Development of Shanghai (No. 07JC14023)the National Natural Science Foundation of China(No. 10572091)
文摘The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k - two equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-fl method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example, the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed.