期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response
1
作者 Zhicheng Liu Long Zhao +2 位作者 Guanru Wen Peng Yuan Qiu Jin 《Structural Durability & Health Monitoring》 EI 2023年第6期541-555,共15页
The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learnin... The displacement of transmission tower feet can seriously affect the safe operation of the tower,and the accuracy of structural health monitoring methods is limited at the present stage.The application of deep learning method provides new ideas for structural health monitoring of towers,but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning(DL).In this paper,we propose a DT-DL based tower foot displacement monitoring method,which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method.Then the vibration signal visualization and Data Transfer(DT)are used to add tower fault data samples to solve the problem of insufficient actual data quantity.Subsequently,the dynamic response test is carried out under different tower fault states,and the tower fault monitoring is carried out by the DL method.Finally,the proposed method is compared with the traditional online monitoring method,and it is found that this method can significantly improve the rate of convergence and recognition accuracy in the recognition process.The results show that the method can effectively identify the tower foot displacement state,which can greatly reduce the accidents that occurred due to the tower foot displacement. 展开更多
关键词 Tower online monitoring wind-induced response continuous wavelet transform CNN multi sensor information fusion
下载PDF
Research on wind-induced responses of a large-scale membrane structure 被引量:4
2
作者 Zhou Xuanyi Han Zhihui +3 位作者 Gu Ming Zhang An-an Zhang Weiyu Fang Wei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期297-305,共9页
The wind-induced responses of a large-scale membrane structure, Expo Boulevard, are evaluated in this study. To obtain the wind pressure distribution on the roof surface, a wind tunnel test is performed. A brief analy... The wind-induced responses of a large-scale membrane structure, Expo Boulevard, are evaluated in this study. To obtain the wind pressure distribution on the roof surface, a wind tunnel test is performed. A brief analysis of wind pressure on the membrane roof is conducted first and then an analysis of the wind-induced responses of the structure is carried out using a numerical integral method in the time domain. In the process of calculation, the geometrical nonlinearity is taken into account. Results indicate that mean, RSM and peak values of the structure responses increase nonlinearly while the approaching flow velocity increases. Strong nonlinear characteristics are observed in the displacement responses, whereas the responses of nodal stress and cable axial force show minimal nonlinear properties when the membrane structure is subjected to wind loads. Different values of the damping ratio only have a minimal impact on the RSM response of the structure because the background component is a dominant part of the total dynamic response and the resonant component is too small. As the damping ratio increases from 0.02 to 0.05, the RMS responses of vertical displacement, nodal stress and cable axial force decrease by 8.1%, 6.7% and 17.9%, respectively. Since the mean component plays a significant role in the wind-induced response, the values of the gust response factor are not high for Expo Boulevard. 展开更多
关键词 wind tunnel test wind-induced response time domain method geometrical nonlinear analysis
下载PDF
Wind-induced responses of super-large cooling towers 被引量:3
3
作者 柯世堂 葛耀君 +2 位作者 赵林 陈少林 Y.Tamura 《Journal of Central South University》 SCIE EI CAS 2013年第11期3216-3228,共13页
Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formula... Traditional gust load factor(GLF)method,inertial wind load(IWL)method and tri-component method(LRC+IWL)cannot accurately analyze the wind-induced responses of super-large cooling towers,so the real combination formulas of fluctuating wind-induced responses and equivalent static wind loads(ESWLSs)were derived based on structural dynamics and random vibration theory.The consistent coupled method(CCM)was presented to compensate the coupled term between background and resonant response.Taking the super-large cooling tower(H=215 m)of nuclear power plant in Jiangxi Province,China,which is the highest and largest in China,as the example,based on modified equivalent beam-net design method,the aero-elastic model for simultaneous pressure and vibration measurement of super-large cooling tower is firstly carried out.Then,combining wind tunnel test and CCM,the effects of self-excited force on the surface pressures and wind-induced responses are discussed,and the wind-induced response characteristics of background component,resonant component,coupled term between background and resonant response,fluctuating responses,and wind vibration coefficients are discussed.It can be concluded that wind-induced response mechanism must be understood to direct the wind resistant design for super-large cooling towers. 展开更多
关键词 super-large cooling towers wind-induced responses wind vibration coefficients aero-elastic model consistent coupled method
下载PDF
Effects of high modes on the wind-induced response of super high-rise buildings 被引量:2
4
作者 Feng Ruoqiang Guirong Yan Ge Jinming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第3期427-434,共8页
For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise... For super high-rise buildings, the vibration period of the basic mode is several seconds, and it is very close to the period of the fluctuating wind. The damping of super high-rise buildings is low, so super high-rise buildings are very sensitive to fluctuating wind. The wind load is one of the key loads in the design of super high-rise buildings. It is known that only the basic mode is needed in the wind-response analysis of tall buildings. However, for super high-rise buildings, especially for the acceleration response, because of the frequency amplification of the high modes, the high modes and the mode coupling may need to be considered. Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response. The conclusions can be drawn as follows. First, for the displacement response, the basic mode is dominant, and the high modes can be neglected. Second, for the acceleration response, the high modes and the mode coupling should be considered. Lastly, the strain energy of modes can only give the vibration energy distribution of the high-rise building, and it cannot describe the local wind-induced vibration of high-rise buildings, especially for the top acceleration response. 展开更多
关键词 super high-rise building wind tunnel test mode couple wind-induced response
下载PDF
Wind-induced vibration control of bridges using liquid column damper 被引量:3
5
作者 薛素铎 高赞明 徐幼麟 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期271-280,共10页
The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for t... The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge. 展开更多
关键词 long span bridge bridge deck wind-induced vibration vibration control FLUTTER BUFFETING tuned liquid column damper TLCD-bridge interaction mathematical model
下载PDF
Wind-induced response analysis of conical membrane structures 被引量:2
6
作者 陈波 武岳 沈世钊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期481-487,共7页
Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis ... Conical membrane structures are a typical form of tensile membrane structures. In the past, most studies focused on the static performance, but few on dynamic performance. In this paper, systematic parameter analysis of wind-induced response of conical membrane structures has been performed with nonlinear random simulation method in a time domain, by considering some parameters, such as span, rise-span ratio, prestress of membrane, and characteristic of the approaching wind flow. Moreover, formulas of the dynamic coefficient and nonlinear adjustment factor are advised, which can be conveniently used in wind-resistant design of conical membrane structures. 展开更多
关键词 conical membrane structures wind-induced response the dynamic coefficient nonlinear adjustment factor
下载PDF
Wind-Induced Response Characteristics of a Tall Building from GPS and Accelerometer Measurements 被引量:3
7
作者 Cuilin Kuang Kenny Chung Sau Kwok +1 位作者 Peter Andrew Hitchcock Xiaoli Ding 《Positioning》 2011年第1期1-13,共13页
The main objectives of the research are to characterize the wind-induced resonant and slowly-varying (quasi-static) responses of a tall building under ambient wind excitations based on GPS measurements. The equipment ... The main objectives of the research are to characterize the wind-induced resonant and slowly-varying (quasi-static) responses of a tall building under ambient wind excitations based on GPS measurements. The equipment used includes two sets of orthogonally aligned accelerometers, two GPS receivers and an ultrasonic anemometer. The natural frequencies of the wind-induced vibration of the tall building are determined by carrying out spectral analysis of the measured time series of acceleration. The time series are also used to estimate the structural damping with the random decrement technique (RDT). The results show that GPS can be effectively used to measure the resonant and slowly-varying responses of tall buildings with 3D mode shapes under wind excitations. The results from the GPS and the accelerometers agree well with each other in both the time and frequency domains. 展开更多
关键词 GPS MEASUREMENTS ACCELERATION wind-induced RESPONSE Tall BUILDING
下载PDF
Wind-Induced Vibration Control for Substation Frame on Viscous Damper 被引量:1
8
作者 Bingji Lan Kanghao Yan 《Computers, Materials & Continua》 SCIE EI 2020年第3期1303-1315,共13页
In order to study the wind-induced vibration control effect of the viscous damper on the large-scale substation frame,this paper takes the large-scale 1000 kV substation frame of western Inner Mongolia as an example.T... In order to study the wind-induced vibration control effect of the viscous damper on the large-scale substation frame,this paper takes the large-scale 1000 kV substation frame of western Inner Mongolia as an example.The time-history sample of pulsating wind load is simulated by harmonic superposition method based on Matlab software.6 kinds of viscous damper arrangement schemes have been designed,and SAP2000 finite element software is used for fine modeling and input wind speed time history load for nonlinear time history analysis.The displacement and acceleration of a typical node are the indicators of wind vibration control.The wind-induced vibration control effects of different schemes under different damping parameters have compared,and the damping parameters are analyzed for the optimal layout scheme.The results show that a viscous damper has installed in the lower layers of the substation;a viscous damper is placed between the ground column and the lattice beam.It is an integrated optimal solution.The wind-induced vibration control effect of the optimal scheme is sensitive to the viscous damper parameters,and the control effect does not increase linearly with the increase of the damping index and the damping coefficient.Corresponding to different damping indexes,the damping coefficient has a better range of values. 展开更多
关键词 Viscous damper wind-induced vibration control arrangement plan damping coefficient damping index
下载PDF
Wind-induced vibration control of long-span power transmission towers 被引量:1
9
作者 尹鹏 《Journal of Chongqing University》 CAS 2009年第2期112-124,共13页
We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup t... We investigated wind-induced vibration control of long-span power transmission towers based on a case study of the Jingdongnan-Nanyang-Jingmen 1 000 kV transmission line project in P. R. China. The height of the cup tower is 181 m with a ground elevation of 47 m, which makes it a super flexible and wind-sensitive structure. Therefore, we should analyze the wind- resistant capacity of the system. We simulated applicable transverse fluctuating wind velocity field, developed a lead-rubber damper (LRD) for controlling wind-induced vibration of long-span transmission towers, deduced LRD calculation model parameter, and researched the best layout scheme and installation method of LRD. To calculate the wind-induced response of tower-line coupling system in seven layout schemes, we used the time history analysis method, and obtained the efficiencies of wind-induced vibration control. LRD deformation research proved that the damp of all LRDs was efficient under the designed wind velocity when they were laid along the edge of tower heads. We studied the controlling efficiency resulting fTom only applying stiffness to the tower polos where the dampers used to be laid under the designed wind velocity. The results show that the controlling efficiency was not ideal when the stiffness is increased on the poles only. Therefore, LRD should conlxibute to both the stiffness and damp of a structure to effectively reduce the dynamic response of a tower-line coupling system under strong winds. We also discussed the controlling efficiency of LRD under static winds. The results show that there was little difference between displacements derived by the finite clement time history method and those obtained by static wind method conducted by a design institute. This means the simulation on space relevant wind velocity field was accurate and reasonable. 展开更多
关键词 transmission towers lead-rubber damper wind-induced vibration control
下载PDF
Dynamic Characteristics Analysis of Ice-Adhesion Transmission Tower-Line System under Effect of Wind-Induced Ice Shedding 被引量:1
10
作者 Yongping Yu Lihui Chen +1 位作者 JuanjuanWang Guoji Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期647-670,共24页
The tower line system will be in an unsafe status due to uniform or uneven fall of ice coating which is attached to the surface of tower and lines.The fall of ice could be caused by wind action or thermal force.In ord... The tower line system will be in an unsafe status due to uniform or uneven fall of ice coating which is attached to the surface of tower and lines.The fall of ice could be caused by wind action or thermal force.In order to study the dynamic characteristics of the self-failure of the transmission line under the action of dynamicwind load,a finite elementmodel of the two-span transmission tower line system was established.The birth and death element methods are used to simulate the icing and shedding of the line.Tensile failure strength is the shedding criterion for ice coating.The fluctuating wind speed time history of the tower line systemis first simulated,and then the fluctuating wind and the average wind are superimposed to generate the instantaneous wind speed and converted into wind load.The dynamic response of the transmission tower line systemunder iced coupling with different wind speeds and different thicknesses of ice coating was studied.This is the first attempt that the coupling dynamic response of the icing shedding and wind load for the transmission tower-line system is discussed in this paper.In addition,the dynamic characteristics of wind are included.In particular,the limiting mechanical conditions are considered.According to the simulation results,it is found:because of the ice shedding,the stress of the conductor changes obviously in the first 20 seconds,and the ground wire changes sharply in the first two seconds;the icing of the conductor(ground)wire is gradually deicing under the action of wind vibration;the displacement of tower top increases with the increase of wind speed and icing thickness. 展开更多
关键词 Tower line system fluctuating wind ice shedding dynamic response wind-induced ice shedding
下载PDF
Observation and modeling of tide- and wind-induced surface currents in Galway Bay 被引量:1
11
作者 Lei Ren Stephen Nash Michael Hartnett 《Water Science and Engineering》 EI CAS CSCD 2015年第4期345-352,共8页
A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model... A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs) and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC), was developed based on a terrain-following vertical (sigma) coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tideand wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column. 展开更多
关键词 wind-induced surface current Vertical layer structure High-frequency radar Coastal ocean dynamics application radar Environmental fluid dynamicscode Galway Bay
下载PDF
Wind-induced vibration of single-layer reticulated shell structures
12
作者 张建胜 武岳 沈世钊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期494-498,共5页
Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-w... Aiming at the dynamic response of reticulated shell structures under wind load,systematic parameter analyses on wind-induced responses of Kiewitt6-6 type single-layer spherical reticulated shell structures and three-way grid single-layer cylindrical reticulated shell structures were performed with the random simulation method in time domain,including geometric parameters,structural parameters and aerodynamic parameters.Moreover,a wind-induced vibration coefficient was obtained,which can be a reference to the wind-resistance design of reticulated shell structures.The results indicate that the geometric parameters are the most important factor influencing wind-induced responses of the reticulated shell structures;the wind-induced vibration coeffi-cient is 3.0-3.2 for the spherical reticulated shell structures and that is 2.8-3.0 for the cylindrical reticula-ted shell structures,which shows that the wind-induced vibration coefficients of these two kinds of space frames are well-proportioned. 展开更多
关键词 reticulated shell structures wind-induced response random simulation method in time domain wind-induced vibration coefficient
下载PDF
A Process Study of the Wind-Induced Circulation in the Persian Gulf
13
作者 Stéphane Pous Xavier Carton Pascal Lazure 《Open Journal of Marine Science》 2013年第1期1-11,共11页
A shallow-water model, coupled with a three dimensional, hydrostatic ocean model, is used to study the wind induced circulation, and the Shatt-al-Arab river plume expansion, in the Persian Gulf. The models are used in... A shallow-water model, coupled with a three dimensional, hydrostatic ocean model, is used to study the wind induced circulation, and the Shatt-al-Arab river plume expansion, in the Persian Gulf. The models are used in an idealized configuration. The following results are obtained: 1) with northwesterly winds, a double gyre is formed: this gyre is cyclonic in the south and anticyclonic in the north. Southeastward currents flow along the Iranian and Arabian coast where the wind stress at the surface dominates the pressure gradient related to the free surface slope, and conversely in the deeper region of the Gulf;2) In the eastern part of the Gulf, the cyclonic gyre intensifies, as observed and reported in the literature;3) For northwesterly winds, the plume from Shatt-al-Arab first heads towards the Iranian coast and then spreads southeastward along the Arabian coast;for northerly and northeasterly winds, the plume directly follows the Kuwaiti coast and then the Arabian coast. This sensitivity of the orientation can be related to the double gyre flow structure;4) A southeasterly wind confines the plume in the northern end of the Gulf as does a pure tidal flow. 展开更多
关键词 PERSIAN GULF wind-induced CIRCULATION Hydrodynamical MODELING
下载PDF
Case Study of Wind-Induced Vibration of a Cooling Tower Under Typhoon Environment
14
作者 XING Yuan ZHAO Lin +1 位作者 CHEN Xu GE Yaojun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第1期108-119,共12页
As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields ... As high-rise cooling towers are constantly emerging,wind effects on this kind of wind-sensitive structures have attracted more and more attention,especially in typhoon prone areas.Terrain Type B turbulent flow fields under the normal wind and typhoon are simulated by active wind tunnel technology,and rigid-pressure-measurement model and aero-elastic-vibration-measurement model of a large cooling tower are built.The stagnation point,peak suction point,separation point and leeward point of the throat position shell are selected to analyze pressure coefficient,probability distribution,peak factor,power spectral density and dynamic amplification factor under normal wind and typhoon.It is clarified that there exists a significant non-Gaussian characteristic under typhoon condition,which also exists in structural response level.Resonance response ratio of the total response is higher during typhoon condition.The maximum value of dynamic amplification coefficient under typhoon field is up to 1.18 times over that under normal wind.The findings of this study are expected to be of interest and practical use to professional and researchers involved in the wind-resistant designs of super-large cooling towers in typhoon prone regions. 展开更多
关键词 cooling towers active wind tunnel non-Gaussian characteristic wind-induced vibration dynamic amplification coefficient
下载PDF
Wind tunnel study on wind-induced vibration of middle pylon of Taizhou Bridge
15
作者 Ma Rujin Zhang Zhen Chen Airong 《Engineering Sciences》 EI 2012年第3期77-80,92,共5页
Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbul... Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbulent flow field. And the yaw angle of wind changes from transverse to longitudinal. Through full aero-elastic model testing, wind-induced vibration is checked, which includes vortex resonance, buffeting and galloping. Vortex resonance is observed and further studies are carried out by changing damping ratio. Based on wind tunnel testing results, wind-resistance of middle pylon is evaluated and some suggestions are given for middle pylon's construction. 展开更多
关键词 wind tunnel test aero-elastic modeL wind-induced vibration middle pylon
下载PDF
PIV Studies on Turbulence Structure in Air/Water Interface with Wind-Induced Water Waves
16
作者 M. Sanjou, I. Nezu A. Toda 《Journal of Energy and Power Engineering》 2011年第11期1063-1067,共5页
When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the inter... When wind appears over the free surface, water waves and turbulence are generated by an interfacial shear stress. In particular, turbulent diffusion promotes significantly mass and momentum transport beneath the interface between the water and air significantly in ocean and lakes, and thus it is very important for global environment problems to reveal such turbulence property and coherent structure. Simultaneous measurements of velocities and free-surface elevation allow us to conduct reasonably the phase analysis of the coherent structure in interfacial shear layer. Furthermore, multi-point measurements such as PIV are very powerful to detect the space-time structure of coherent motions. Therefore, in the present study, we developed a specially designed PIV system which can measure the velocity components and surface-elevation fluctuation simultaneously by using two sets of high-speed cameras to reveal the coherent structure in the interfacial shear layer. 展开更多
关键词 Air/water interface wind-induced water waves PIV measurements.
下载PDF
Which adjustment methods are suitable for the wind-induced errors of Geonor T-200BM3 precipitation weighing gauges in a periglacial site?
17
作者 Lei WANG Ren-Sheng CHEN +3 位作者 Wei-Jun SUN Chun-Tan HAN Bao-Juan HUAI Yan-Ni ZHAO 《Advances in Climate Change Research》 SCIE CSCD 2023年第5期707-719,共13页
Single Alter shielded T-200BM3 weighing precipitation gauges are widely used in the measurement of all precipitation types(rainfall,snow and mixed precipitation)in unattended boreal or alpine regions,but their origina... Single Alter shielded T-200BM3 weighing precipitation gauges are widely used in the measurement of all precipitation types(rainfall,snow and mixed precipitation)in unattended boreal or alpine regions,but their original datasets must be adjusted for undercatch errors caused by wind in snowy,windy and harsh environments.Therefore,previous researchers have developed many adjustment methods for all precipitation types on different time scales.However,which adjustment method is suitable for T-200BM3 weighing gauge wind-induced error adjustment in harsh alpine regions is unclear.Therefore,precipitation measurement intercomparison experiments were conducted in the Qilian Mountains from July 2018 to July 2021,and eight adjustment methods;were evaluated for wind-induced errors for daily,individual precipitation event,hourly,and half-hourly time scales.Z2004 outperformed the other adjustment methods in regard to the daily measurements of snow and mixed precipitation.Regarding individual snowfall events,M2007 reduced the absolute value of RMSE(bias)from 1.44 to 1.32 mm(0.77-0.24 mm)and could be recommended for snowfall event adjustment.K2017-1 attained a better performance than K2017-2 in regard to half-hourly snowfall and mixed sample adjustment and was more suitable for half-hourly snowfall sample adjustment.K2017-1 reduced the absolute value of bias from 0.07 to 0.00 mm for snowfall.Finally,Z2004,M2007,and K2017-1 yielded better adjustment results for the daily accumulation precipitation amount(>2 mm d−1),individual snowfall events(>2 mm per event),and half-hourly accumulation snowfall or mixed samples(>1 mm 30 min−1),respectively.However,further intercomparison in different climate regions is needed for trace precipitation samples. 展开更多
关键词 Evaluation wind-induced errors Adjustment methods Weighing gauges Periglacial site
原文传递
Numerical Simulation Study of Vibration Characteristics of Cantilever Traffic Signal Support Structure under Wind Environment
18
作者 Meng Zhang Zhichao Zhou +1 位作者 Guifeng Zhao Fangfang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期673-698,共26页
Computational fluid dynamics(CFD)and the finite element method(FEM)are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole.By building a finite element model... Computational fluid dynamics(CFD)and the finite element method(FEM)are used to investigate the wind-driven dynamic response of cantilever traffic signal support structures as a whole.By building a finite element model with the same scale as the actual structure and performing modal analysis,a preliminary understanding of the dynamic properties of the structure is obtained.Based on the two-way fluid-structure coupling calculation method,the wind vibration response of the structure under different incoming flow conditions is calculated,and the vibration characteristics of the structure are analyzed through the displacement time course data of the structure in the crosswind direction and along-wind direction.The results show that the maximum response of the structure increases gradually with the increase of wind speed under 90°wind direction angle,showing a vibration dispersion state,and the vibration response characteristics are following the vibration phenomenon of galloping;under 270°wind direction angle,the maximum displacement response of the structure occurs at the lower wind speed of 5 and 6m/s,and the vibration generated by the structure is vortex vibration at this time;the displacement response of the structure in along-wind direction increaseswith the increase of wind speed.The along-wind displacement response of the structure will increase with increasing wind speed,and the effective wind area and shape characteristics of the structurewill also affect the vibration response of the structure. 展开更多
关键词 Signal structure modal analysis wind-induced vibration two-way fluid-structure interaction numerical simulation
下载PDF
空间绳系组合体拖曳动力学分析及振动控制 被引量:8
19
作者 王班 郭吉丰 +2 位作者 易琳 周卫华 樊星星 《宇航学报》 EI CAS CSCD 北大核心 2018年第2期131-138,共8页
空间绳系捕获系统捕获目标物后的组合体在拖曳离轨过程中常产生振动,为此,建立了切向连续推力作用下的空间拖曳绳系组合体面内动力学模型,并对模型进行了横向摆动与纵向振动耦合分析。针对组合体的纵向振动问题提出了一种以张力控制为... 空间绳系捕获系统捕获目标物后的组合体在拖曳离轨过程中常产生振动,为此,建立了切向连续推力作用下的空间拖曳绳系组合体面内动力学模型,并对模型进行了横向摆动与纵向振动耦合分析。针对组合体的纵向振动问题提出了一种以张力控制为内环、速度控制为外环的双闭环振动控制策略。进行了振动控制仿真分析,并根据动力学的相似性,建立地面模拟实验系统,仿真与实验结果表明该控制策略可迅速抑制组合体纵向振动、减小系绳冲击并可避免出现系绳松弛现象。 展开更多
关键词 空间绳系组合体 拖曳离轨 耦合分析 双闭环 振动控制
下载PDF
GWF型隔振器性能分析与实验验证 被引量:5
20
作者 骆号 陈建松 颜肖龙 《噪声与振动控制》 CSCD 2012年第4期178-182,共5页
GWF型无谐振隔振器利用库伦阻尼和弹簧变形消耗能量,因无谐振峰而广泛应用于电子设备的隔振中。分析了GWF型无谐振隔振器理论模型,得出理论解锁频率和隔振传递率,并通过实验加以验证,为选择合适的刚度和摩擦力提供实验及理论依据。
关键词 振动与波 隔振器性能分析 实验验证 振动控制 干摩擦阻尼
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部