The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. S...The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Solar air-conditioning systems(SACS) are a promising solution for the reduction of conventional energy in buildings. The storage, especially the cold storage, plays an important role in SACS for unstable solar irradiation. In this paper, we took the absorption refrigerating unit as an example, and the solar air-conditioning system of an office building in Beijing was simulated. The accuracy of this model was verified by comparing with the SACS operation data. Moreover, based on the simulation data, the cold storage capacity of the solar air-conditioning system in different climatic regions was studied. The cold storage capacities of SACS in 20 cities distributed in different climate regions were studied systematically. The results simulated by our proposed model will be beneficial to the SACS design, and will enlarge the application of SACS.展开更多
基金funded by the National Key R&D Program of China (No. 2017YFC0702600)
文摘The building sector accounts for more than 40% of the global energy consumption. This consumption may be lowered by reducing building energy requirements and using renewable energy in building energy supply systems. Solar air-conditioning systems(SACS) are a promising solution for the reduction of conventional energy in buildings. The storage, especially the cold storage, plays an important role in SACS for unstable solar irradiation. In this paper, we took the absorption refrigerating unit as an example, and the solar air-conditioning system of an office building in Beijing was simulated. The accuracy of this model was verified by comparing with the SACS operation data. Moreover, based on the simulation data, the cold storage capacity of the solar air-conditioning system in different climatic regions was studied. The cold storage capacities of SACS in 20 cities distributed in different climate regions were studied systematically. The results simulated by our proposed model will be beneficial to the SACS design, and will enlarge the application of SACS.