The pattern for filament wound toroidal vessels derived from differential geometry is presented. The pattern design and optimization procedure was put forward according to imposed design requirements. The mathematical...The pattern for filament wound toroidal vessels derived from differential geometry is presented. The pattern design and optimization procedure was put forward according to imposed design requirements. The mathematical model and movement equations of winding torns are obtained by analytic geometry. A computer simulation system of filament winding process based on optimal pattern design was developed to verify the correctness and practicability of the winding pattern. The optimum pattern and winding simulation were performed by this system. The simulation results show that the pattern satisfies both winding principles and structural optimization. The recommended design-oriented method can be applied to the preliminary design of filament wound toroidal vessels.展开更多
Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The...Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWPI and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland--Barents--Kara seas from autunm to winter, reflecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are significantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70~N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily reflect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly influence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume flux is only significantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of describing wind field variability over the Arctic Ocean. The results have important implications for understanding and investigating Arctic sea ice variations: Dominant patterns of Arctic surface wind variability, rather than simply whether there are the Arctic dipole anomaly and the Arctic Oscillation (or NAO), effectively affect the spatial distribution of Arctic sea ice anomalies.展开更多
The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,k...The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,known locally as elevated southeasterly gale(ESEG).It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution.During 2013-17,Urumqi had an average of 50 d yr-1 of heavy pollution(daily average PM2.5 concentration>150μg m-3),of which 41 days were in winter.The majority(71.4%)of heavy pollution processes were associated with the shallow foehn.Based on microwave radiometer,wind profiler,and surface observations,the surface meteorological fields and boundary layer evolution during the worst pollution episode in Urumqi during 16-23 February 2013 are investigated.The results illustrate the significant role of shallow foehn in the building,strengthening,and collapsing of temperature inversions.There were four wind field patterns corresponding to four different phases during the whole pollution event.The most serious pollution phase featured shallow foehn activity in the south of Urumqi city and the appearance of an intense inversion layer below 600 m.Intense convergence caused by foehn and mountain-valley winds was sustained during most of the phase,resulting in pollutants sinking downward to the lower boundary layer and accumulating around urban area.The key indicators of such events identified in this study are highly correlated to particulate matter concentrations and could be used to predict heavy pollution episodes in the feature.展开更多
The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocea...The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.展开更多
文摘The pattern for filament wound toroidal vessels derived from differential geometry is presented. The pattern design and optimization procedure was put forward according to imposed design requirements. The mathematical model and movement equations of winding torns are obtained by analytic geometry. A computer simulation system of filament winding process based on optimal pattern design was developed to verify the correctness and practicability of the winding pattern. The optimum pattern and winding simulation were performed by this system. The simulation results show that the pattern satisfies both winding principles and structural optimization. The recommended design-oriented method can be applied to the preliminary design of filament wound toroidal vessels.
基金supported by the National Key Basic Research Project of China (Grant nos.2013CBA01804,2015CB453200)the National Natural Science Foundation of China (Grant nos.41475080,41221064)the Ocean Public Welfare Scientific Research Project of China (Grant no.201205007)
文摘Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWPI and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland--Barents--Kara seas from autunm to winter, reflecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are significantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70~N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily reflect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly influence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume flux is only significantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of describing wind field variability over the Arctic Ocean. The results have important implications for understanding and investigating Arctic sea ice variations: Dominant patterns of Arctic surface wind variability, rather than simply whether there are the Arctic dipole anomaly and the Arctic Oscillation (or NAO), effectively affect the spatial distribution of Arctic sea ice anomalies.
基金supported by Central Scientific Research and Operational Project (IDM2020001)National Natural Science Foundation of China (Grant No. 41575011)China Desert Funds (Sqj2017013, Sqj2019004)
文摘The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,known locally as elevated southeasterly gale(ESEG).It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution.During 2013-17,Urumqi had an average of 50 d yr-1 of heavy pollution(daily average PM2.5 concentration>150μg m-3),of which 41 days were in winter.The majority(71.4%)of heavy pollution processes were associated with the shallow foehn.Based on microwave radiometer,wind profiler,and surface observations,the surface meteorological fields and boundary layer evolution during the worst pollution episode in Urumqi during 16-23 February 2013 are investigated.The results illustrate the significant role of shallow foehn in the building,strengthening,and collapsing of temperature inversions.There were four wind field patterns corresponding to four different phases during the whole pollution event.The most serious pollution phase featured shallow foehn activity in the south of Urumqi city and the appearance of an intense inversion layer below 600 m.Intense convergence caused by foehn and mountain-valley winds was sustained during most of the phase,resulting in pollutants sinking downward to the lower boundary layer and accumulating around urban area.The key indicators of such events identified in this study are highly correlated to particulate matter concentrations and could be used to predict heavy pollution episodes in the feature.
基金jointly supported by the Special Fund for Public Welfare Industry (meteorology) (Grant No. GYHY201306026)the National Natural Science Foundation of China (Grant Nos. 41421004 and 41522503)
文摘The possible mechanism behind the variability in the dipole pattern of boreal winter precipitation over East Asia is analyzed in this study. The results show that the SST anomalies(SSTAs) over the South Pacific Ocean(SPO) in boreal autumn are closely related to the variability in the dipole pattern of boreal winter precipitation over East Asia. The physical link between the boreal autumn SPO SSTAs and the boreal winter East Asian precipitation dipole pattern is shown to mainly be the seasonal persistence of the SPO SSTAs themselves. The seasonal persistence of the SPO SSTAs can memorize and transport the signal of the boreal autumn SSTAs to the following winter, and then stimulates a meridional teleconnection pattern from the SH to the NH, resulting in a meridional dipole pattern of atmospheric circulation over East Asia in boreal winter. As a major influencing factor, this dipole pattern of the atmospheric circulation can finally lead to the anomalous precipitation dipole pattern over East Asia in boreal winter. These observed physical processes are further confirmed in this study through numerical simulation. The evidence from this study, showing the impact of the SPO SSTAs in boreal autumn,not only deepens our understanding of the variability in East Asian boreal winter precipitation, but also provides a potentially useful predictor for precipitation in the region.