期刊文献+
共找到769篇文章
< 1 2 39 >
每页显示 20 50 100
基于窗口注意力聚合Swin Transformer的无人机影像语义分割方法
1
作者 李俊杰 易诗 +1 位作者 何润华 刘茜 《计算机工程与应用》 CSCD 北大核心 2024年第15期198-210,共13页
采用无人机遥感影像进行地物分类的过程中,由于无人机影像的小尺寸地物目标不够突出和无人机影像背景复杂、地物信息难以辨别等问题,采用现行的经典语义分割方法难以获得理想的地物分类效果。该研究以Swin Transformer网络模型为基础,... 采用无人机遥感影像进行地物分类的过程中,由于无人机影像的小尺寸地物目标不够突出和无人机影像背景复杂、地物信息难以辨别等问题,采用现行的经典语义分割方法难以获得理想的地物分类效果。该研究以Swin Transformer网络模型为基础,提出了基于窗口注意力聚合Swin Transformer(window attention aggregation Swin Transformer,WAA SwinT)的语义分割网络模型方法。采用了多窗口注意力聚合的方式来进行更精准的注意力计算,以提升无人机遥感影像中的小尺寸地物目标的分类精度和质量。同时借鉴嵌入连接的思想,采用多级特征嵌入连接解码器改善网络结构,应用于无人机遥感影像的分割中,取得了更精细化的分割效果。为了验证提出的方法在无人机影像语义分割中的效果,分别在城市无人机遥感影像UAVid数据集和UDD数据集进行了实验,并与现行的经典语义分割方法进行了对比。实验结果表明,语义分割方法在UAVid数据集和UDD数据集上均可以得到最佳的语义分割效果。同时,该语义分割方法能显著地提升无人机影像中小尺寸地物精准分割的质量。 展开更多
关键词 无人机影像 语义分割 Swin transformer 窗口注意力聚合
下载PDF
基于Swin-Transformer改进的目标跟踪算法
2
作者 刘时 朱明 《液晶与显示》 CAS CSCD 北大核心 2024年第11期1569-1580,共12页
基于STARK目标跟踪方法中采用ResNet为骨干网络,其特征提取能力不足,跟踪效果较差。针对此问题,本文基于Swin-Transformer网络,提出了一种改进的目标跟踪算法。首先,对Swin-Transformer内窗口注意力机制进行多尺度改进,设计多尺度窗口模... 基于STARK目标跟踪方法中采用ResNet为骨干网络,其特征提取能力不足,跟踪效果较差。针对此问题,本文基于Swin-Transformer网络,提出了一种改进的目标跟踪算法。首先,对Swin-Transformer内窗口注意力机制进行多尺度改进,设计多尺度窗口模块MW-MSA,旨在提取更为丰富的局部细节信息,与全局上下文信息共同构成多尺度判别性特征。接着,结合Transformer的编码-解码结构作为特征融合网络,采用优化的多层感知机作为更新分数判断网络构成状态感知模块。最后,针对目标消失、重现挑战,提出了一种多跟踪器融合方法。融合多尺度改进的跟踪算法和SuperDiMP跟踪算法,设计消失状态判断模块,综合考虑两种跟踪器的置信度分数及目标在预测框附近的可能性估计。实验结果表明,相较STARK跟踪算法,本文算法在GOT-10K数据集上的平均重叠率(AO)提升2.7%、成功率SR_(0.5)提高3.3%。在L-LaSOT数据集上,相较于STARK算法,成功率(AUC)提升0.8%,在目标消失重现挑战下成功率提升1%。 展开更多
关键词 目标跟踪 多尺度窗口 Swin-transformer 模板更新 多模型融合
下载PDF
引入轻量级Transformer的自适应窗口立体匹配算法
3
作者 王正家 胡飞飞 +2 位作者 张成娟 雷卓 何涛 《计算机工程》 CAS CSCD 北大核心 2024年第2期256-265,共10页
现有端到端的立体匹配算法为了减轻显存消耗和计算量而预设固定视差范围,在匹配精度和运行效率上难以平衡。提出一种基于轻量化Transformer的自适应窗口立体匹配算法。利用具有线性复杂度的坐标注意力层对低分辨率特征图进行位置编码,... 现有端到端的立体匹配算法为了减轻显存消耗和计算量而预设固定视差范围,在匹配精度和运行效率上难以平衡。提出一种基于轻量化Transformer的自适应窗口立体匹配算法。利用具有线性复杂度的坐标注意力层对低分辨率特征图进行位置编码,减轻计算量并增强相似特征的辨别力;设计轻量化Transformer特征描述模块,转换上下文相关的特征,并引入可分离多头自注意力层对Transformer进行轻量化改进,降低Transformer的延迟性;用可微匹配层对特征进行匹配,设计自适应窗口匹配细化模块进行亚像素级的匹配细化,在提高匹配精度的同时减少显存消耗;经视差回归后生成无视差范围的视差图。在KITTI2015、KITTI2012和SceneFlow数据集上的对比实验表明,该算法比基于标准Transformer的STTR在匹配效率上快了近4.7倍,具有更快的运行速度和更友好的存储性能;比基于3D卷积的PSMNet误匹配率降低了18%,运行时间快了5倍,实现了更好的速度和精度的平衡。 展开更多
关键词 立体匹配 transformER 自适应窗口 可分离自注意力机制 坐标注意力
下载PDF
面向用电负荷分解的特征融合与Transformer模型 被引量:1
4
作者 王丹宇 刘君 +1 位作者 周亚同 何静飞 《电力系统及其自动化学报》 CSCD 北大核心 2024年第6期129-136,共8页
针对目前非侵入式负荷分解中存在的特征提取不充分、分解精度较低等问题,本文提出了一种基于特征融合与Transformer的负荷分解模型MulTrm。首先使用滑动窗口法对负荷数据进行处理,增加训练样本数量;接着采用多个不同尺寸的卷积块提取总... 针对目前非侵入式负荷分解中存在的特征提取不充分、分解精度较低等问题,本文提出了一种基于特征融合与Transformer的负荷分解模型MulTrm。首先使用滑动窗口法对负荷数据进行处理,增加训练样本数量;接着采用多个不同尺寸的卷积块提取总负荷功率值的多尺度特征并进行融合,同时结合总负荷序列中的位置特征,以获取更加丰富的特征信息;然后通过Transformer中的多头自注意力机制扩大感受野,以更好地捕获用电负荷序列中蕴含的长距离依赖关系,从而提高模型的分解精度;最后通过反卷积层和全连接层将特征映射为电器负荷序列,实现负荷分解。通过在REDD数据集和UK-DALE数据集上进行实验,验证了MulTrm模型的有效性。 展开更多
关键词 非侵入式负荷分解 滑动窗口 特征融合 transformer模型 多头自注意力
下载PDF
改进视觉Transformer的视频插帧方法
5
作者 石昌通 单鸿涛 +3 位作者 郑光远 张玉金 刘怀远 宗智浩 《计算机应用研究》 CSCD 北大核心 2024年第4期1252-1257,共6页
针对现有的视频插帧方法无法有效处理大运动和复杂运动场景的问题,提出了一种改进视觉Transformer的视频插帧方法。该方法融合了基于跨尺度窗口的注意力和可分离的时空局部注意力,增大了注意力的感受野并聚合了多尺度信息;对时空依赖和... 针对现有的视频插帧方法无法有效处理大运动和复杂运动场景的问题,提出了一种改进视觉Transformer的视频插帧方法。该方法融合了基于跨尺度窗口的注意力和可分离的时空局部注意力,增大了注意力的感受野并聚合了多尺度信息;对时空依赖和远程像素依赖关系进行联合建模,进而增强了模型对大运动场景的处理能力。实验结果表明,该方法在Vimeo90K测试集和DAVIS数据集上的PSNR指标分别达到了37.13 dB和28.28 dB,SSIM指标分别达到了0.978和0.891。同时,可视化结果表明,该方法针对存在大运动、复杂运动和遮挡场景的视频能产生清晰合理的插帧结果。 展开更多
关键词 视频插帧 transformER 基于跨尺度窗口的注意力 大运动 复杂运动
下载PDF
基于全局依赖Transformer的图像超分辨率网络
6
作者 刘子涵 周登文 刘玉铠 《计算机应用》 CSCD 北大核心 2024年第5期1588-1596,共9页
目前,基于深度学习的图像超分辨网络主要由卷积实现。相较于传统的卷积神经网络(CNN),Transformer在图像超分辨率任务中的主要优势是它的长距离依赖建模能力;然而大多数基于Transformer的图像超分辨率模型在参数量小、网络层数少的情况... 目前,基于深度学习的图像超分辨网络主要由卷积实现。相较于传统的卷积神经网络(CNN),Transformer在图像超分辨率任务中的主要优势是它的长距离依赖建模能力;然而大多数基于Transformer的图像超分辨率模型在参数量小、网络层数少的情况下无法建立全局依赖,限制了模型的性能。为了在超分辨率网络中建立全局依赖,提出了基于全局依赖Transformer的图像超分辨率网络(GDTSR),主要组成部分为残差方形轴向窗口块(RSAWB),它的内部轴向窗口Transformer残差层利用轴向窗口和自注意力,可以使每个像素与整个特征图建立起全局依赖。此外,目前大多数图像超分辨率模型的超分辨率图像重建模块都由卷积组成,为了动态整合提取到的特征信息,结合Transformer与卷积,共同重建超分辨率图像。实验结果表明,GDTSR在5个标准测试集Set5、Set14、B100、Urban100和Manga109上的测试结果中,3个倍数(×2,×3,×4)的峰值信噪比(PSNR)和结构相似性(SSIM)均达到了最优,特别是在大尺寸图像的Urban100和Manga109数据集上模型性能的提升尤为明显。 展开更多
关键词 图像超分辨率 transformER 自注意力 全局依赖 轴向窗口
下载PDF
基于改进Transformer模型的多声源分离方法
7
作者 曾援 李剑 +2 位作者 马明星 庞润嘉 贺斌 《计算机技术与发展》 2024年第5期60-65,共6页
目前主流的语音分离算法模型都是基于复杂的递归网络或Transformer网络,Transformer网络复杂度高导致训练难度大以及音频的高采样率导致在样本级别上使用超长输入从而获取不完全特征,不能直接对长语音特征序列进行直接建模出现特征丢失... 目前主流的语音分离算法模型都是基于复杂的递归网络或Transformer网络,Transformer网络复杂度高导致训练难度大以及音频的高采样率导致在样本级别上使用超长输入从而获取不完全特征,不能直接对长语音特征序列进行直接建模出现特征丢失问题。对此,该文提出了一种基于Transformer的改进网络模型。首先,在原有Transformer网络模型编码器里新添加下采样块,计算不同时间尺度上的高级特征同时降低特征空间复杂度;其次,在Transformer网络模型的解码器里添加上采样层与编码器下采样层特征融合保证特征不丢失,提高模型分离能力;最后,在模型分离层里引入一种改进的滑动窗口注意力机制,滑动窗口使用循环移位技术,新的特征窗口中包含老的特征窗口特征同时融合特征边缘信息完成了特征窗口之间的信息交互,获得特征编码以及特征位置编码同时提高特征信息之间的相关系数。实验表明,使用SI-SNR评价标准达到13.5 dB,使用SDR评价指标达到14.1 dB,分离效果优于之前的方法。 展开更多
关键词 上下采样层 transformER 特征编码 滑动窗口注意力机制 深度学习
下载PDF
基于Transformer的多方面特征编码图像描述生成算法 被引量:4
8
作者 衡红军 范昱辰 王家亮 《计算机工程》 CAS CSCD 北大核心 2023年第2期199-205,共7页
由目标检测算法提取的目标特征在图像描述生成任务中发挥重要作用,但仅使用对图像进行目标检测的特征作为图像描述任务的输入会导致除关键目标信息以外的其余信息获取缺失,且生成的文本描述对图像内目标之间的关系缺乏准确表达。针对上... 由目标检测算法提取的目标特征在图像描述生成任务中发挥重要作用,但仅使用对图像进行目标检测的特征作为图像描述任务的输入会导致除关键目标信息以外的其余信息获取缺失,且生成的文本描述对图像内目标之间的关系缺乏准确表达。针对上述不足,提出用于编码图像内目标特征的目标Transformer编码器,以及用于编码图像内关系特征的转换窗口Transformer编码器,从不同角度对图像内不同方面的信息进行联合编码。通过拼接方法将目标Transformer编码的目标特征与转换窗口Transformer编码的关系特征相融合,达到图像内部关系特征和局部目标特征融合的目的,最终使用Transformer解码器将融合后的编码特征解码生成对应的图像描述。在MS-COCO数据集上进行实验,结果表明,所构建模型性能明显优于基线模型,BLEU-4、METEOR、ROUGE-L、CIDEr指标分别达到38.6%、28.7%、58.2%和127.4%,优于传统图像描述网络模型,能够生成更详细准确的图像描述。 展开更多
关键词 图像描述 转换窗口 多头注意力机制 多模态任务 transformer编码器
下载PDF
Vibration parameter measurement using the temporal digital hologram sequence and windowed Fourier transform 被引量:2
9
作者 Chong Yang,1,2 and Hong Miao 1,1) Key Laboratory of Mechanical Behavior and Design of Materials (CAS) Department of Modern Mechanics,University of Science and Technology of China,Anhui 230027,China 2) Institute of Structural Mechanics Chinese Academy of Engineering Physics,Sichuan 621900,China 《Theoretical & Applied Mechanics Letters》 CAS 2011年第5期36-40,共5页
Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being... Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits. 展开更多
关键词 vibration measurement digital holography temporal digital hologram sequence windowed Fourier transform
下载PDF
基于改进Swin Transformer的舰船目标实例分割算法 被引量:3
10
作者 钱坤 李晨瑄 +2 位作者 陈美杉 郭继伟 潘磊 《系统工程与电子技术》 EI CSCD 北大核心 2023年第10期3049-3057,共9页
针对反舰武器图像制导目标实例分割精度低,模型中上下文语义交互不充分,特征融合推理速度慢,数据集难易样本不均衡导致训练效果差等问题,提出了一种基于改进滑动窗口的Transformer(shifted windows Transformer,Swin Transformer)的舰... 针对反舰武器图像制导目标实例分割精度低,模型中上下文语义交互不充分,特征融合推理速度慢,数据集难易样本不均衡导致训练效果差等问题,提出了一种基于改进滑动窗口的Transformer(shifted windows Transformer,Swin Transformer)的舰船目标实例分割算法。设计了局部增强感知模块用以拓展感受野,加强语义交互能力;采用反向特征金字塔网络进行特征融合,提高算法处理速度;使用在线困难样例挖掘,改善数据集样本不均衡问题,提升网络训练效果。实验结果表明,改进后的算法相较基线算法在分割准确率上提升了1.5%,在处理速度上提高了1.3%,兼具精度和速度优势。 展开更多
关键词 Swin transformer 反向特征金字塔 在线困难样例挖掘 舰船实例分割
下载PDF
DETECTION OF SHIP WAKES IN SAR IMAGE USING ROTATED WINDOW RADON TRANSFORM 被引量:2
11
作者 Chen Yi Jin Yaqui (Center of Wave Scattering and Remote Sensing, Dept. of Electronics, Fudan Univ., Shanghai 200433) 《Journal of Electronics(China)》 2002年第1期30-36,共7页
A novel method of rotated window Radon transform is developed for identifying the linear texture in SAR image.It is applied to automatic detection of the ship wakes of SEASAT SAR image.The location and direction of th... A novel method of rotated window Radon transform is developed for identifying the linear texture in SAR image.It is applied to automatic detection of the ship wakes of SEASAT SAR image.The location and direction of the traveling ship can be quickly and accurately detectec,In some cases, the ship velocity can also be obtained. 展开更多
关键词 Ship wakes SAR image R.otated window Radon transform
下载PDF
结合卷积Transformer的目标跟踪算法 被引量:9
12
作者 王春雷 张建林 +2 位作者 李美惠 徐智勇 魏宇星 《计算机工程》 CAS CSCD 北大核心 2023年第4期281-288,296,共9页
现有基于Transformer的目标跟踪算法未充分利用Transformer的长距离依赖属性,导致算法提取的特征判别性不足,跟踪稳定性较差。为提高孪生网络目标跟踪算法在复杂场景中的跟踪能力,结合卷积与Transformer的优势,提出目标跟踪算法CTTrack... 现有基于Transformer的目标跟踪算法未充分利用Transformer的长距离依赖属性,导致算法提取的特征判别性不足,跟踪稳定性较差。为提高孪生网络目标跟踪算法在复杂场景中的跟踪能力,结合卷积与Transformer的优势,提出目标跟踪算法CTTrack。在特征提取方面,利用卷积丰富的局部信息和Transformer的长距离依赖属性,以卷积和窗口注意力串联的方式和层次化的结构构建一个通用的目标跟踪骨干网络CTFormer。在特征融合方面,利用互注意力机制构建特征互增强与聚合网络以简化网络结构,加快跟踪速度。在搜索区域选择方面,结合目标运动速度估计,设计自适应调整搜索区域的跟踪策略。实验结果表明,CTTrack在GOT-10k数据集上的平均重叠度为70.3%,相比基于Transformer的跟踪算法TransT和TrDiMP均提高3.2个百分点,在UAV123数据集上的曲线下面积为71.1%,相比TransT和TrDiMP分别提高2.0个百分点和3.6个百分点。在TrackingNet、LaSOT、OTB2015、NFS数据集上分别取得82.1%、66.8%、70.1%、66.3%的曲线下面积,并能以43帧/s的速度进行实时跟踪。 展开更多
关键词 孪生网络 transformer目标跟踪 窗口注意力 互注意力 运动估计 搜索区域
下载PDF
The Coherence Cube Computing Method with Self-adaptive Time Window Based on Wavelet Transform 被引量:5
13
作者 LI Ying-qi CHE Xiang-jiu 《Computer Aided Drafting,Design and Manufacturing》 2014年第2期10-14,共5页
The coherence cube technology has become an important technology for the seismic attribute interpretation, which extracts the discontinuities of the events through analyzing the similarities of adjacent seismic channe... The coherence cube technology has become an important technology for the seismic attribute interpretation, which extracts the discontinuities of the events through analyzing the similarities of adjacent seismic channels to identify the fault form. The coherence cube technology which uses constant time window lengths can not balance the shallow layers and the deep layers, because the frequency band of seismic data varies with time. When analyzing the shallow layers, the time window will crossover a lot of events, which will lead to weak focusing ability and failure to delineate the details. While the time window will not be long enough for analyzing deep layers, which will lead to low accuracy because the coherences near the zero points of the events are heavily influenced by noise. For solving the problem, we should make a research on the coherence cube technology with self-adaptive time window. This paper determines the sample points&#39; time window lengths in real time by computing the instantaneous frequency bands with Wavelet Transformation, which gives a coherence computing method with the self-adaptive time window lengths. The result shows that the coherence cube technology with self-adaptive time window based on Wavelet Transformation improves the accuracy of fault identification, and supresses the noise effectively. The method combines the advantages of long time window method and short time window method. 展开更多
关键词 coherence cube time window length Wavelet transformation seismic attribute
下载PDF
Analysis of PC6 window function using fractional Fourier transform
14
作者 Navdeep Goel Jaspinder Kaur 《光电工程》 CAS CSCD 北大核心 2018年第6期60-68,共9页
Fractional Fourier transform(FRFT)is a linear transform generalizing Fourier transform(FT)that plays an important role in the field of signal processing and analysis.FRFT contains an adjustable parameterα,which it ro... Fractional Fourier transform(FRFT)is a linear transform generalizing Fourier transform(FT)that plays an important role in the field of signal processing and analysis.FRFT contains an adjustable parameterα,which it rotates the signal in the time frequency plane and represents the signal in an intermediate domain between time and frequency.FRFT provides a measure about the angular distribution of signal’s energy in time frequency plane.FT is a special case of FRFT when angleαis equal toπ/2.This paper presents mathematical model for obtaining FRFT of PC6 window function.The different parameters of this window function are also obtained with the help of simulation results.A comparison of window function parameters is presented using FT and FRFT.Also comparison of this window function with Hanning window function is presented in terms of Side Lobe Fall off Rate(SLFOR).For different values of FRFT order,PC6 window function shows variation in different parameters.Thus by changing the FRFT order,the minimum stop band attenuation of the resulting window function can be controlled. 展开更多
关键词 傅立叶变换 信号 函数 数学模型
下载PDF
融合移位窗口注意力的光流计算方法
15
作者 安峰 戴军 韩振 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第8期1255-1262,共8页
针对端到端的光流计算方法容易受限于运动模糊、遮挡和大位移的问题,通过引入注意力机制实现对遮挡像素进行更准确的预测,提出一种融合移位窗口注意力的光流计算方法.首先使用移位窗口注意力对原有的特征图进行特征增强,获取更具全局自... 针对端到端的光流计算方法容易受限于运动模糊、遮挡和大位移的问题,通过引入注意力机制实现对遮挡像素进行更准确的预测,提出一种融合移位窗口注意力的光流计算方法.首先使用移位窗口注意力对原有的特征图进行特征增强,获取更具全局自相似性的特征,弥补了卷积特征的局部性特点;然后使用移位窗口注意力进行相关体解析,包括2D运动向量解析和光流增量的计算,获得更准确的光流增量;最后引入遮挡图作为位置编码,在计算注意力时考虑更多的像素位置关系.实验结果表明,在Sintel数据集上,端到端的误差达到1.33;在FlyingChairs数据集上,单帧计算时间为69 ms,比全局运动聚合方法减少4.2%,超过了常见光流计算方法的精度和效率. 展开更多
关键词 光流计算 自注意力机制 移位窗口注意力 位置编码
下载PDF
基于自适应短时傅里叶变换的品质因子Q值估算方法
16
作者 赵锐锐 李勇军 +1 位作者 黄有晖 左安鑫 《石油物探》 CSCD 北大核心 2024年第5期981-992,共12页
品质因子Q是描述地下介质对地震波吸收衰减强弱程度的参数,同时也是地层含油气性的重要标志。在地震资料Q估算中,常用的方法是短时傅里叶变换方法,当窗函数被选定以后,其时频分辨率就固定了。针对该问题,提出一种自适应窗短时傅里叶变... 品质因子Q是描述地下介质对地震波吸收衰减强弱程度的参数,同时也是地层含油气性的重要标志。在地震资料Q估算中,常用的方法是短时傅里叶变换方法,当窗函数被选定以后,其时频分辨率就固定了。针对该问题,提出一种自适应窗短时傅里叶变换的方法,以获得更准确的瞬时中心频率,并利用峰值频移法来估算品质因子Q。首先,利用固定窗长的短时傅里叶变换来提取信号的瞬时中心频率作为初始频率;然后,根据初始频率自适应计算不同频率的窗长,并利用自适应窗长短时傅里叶变换来求取瞬时中心频率;最后,结合峰值频移法得到高分辨率的品质因子Q值。利用合成数据和实际数据进行了测试,结果表明,相比于固定时窗短时傅里叶变换方法,自适应短时傅里叶变换方法具有更好的时间和频率分辨率,可以获得更高分辨率的品质因子Q值。该结果可以为地下介质的研究提供更准确、可靠的工具,有助于更好地了解地下结构和油气资源分布情况。 展开更多
关键词 品质因子Q 短时傅里叶变换 窗函数 自适应 峰值频移法
下载PDF
基于非参数估计与滑动窗口改进的主成分分析方法研究
17
作者 李冬 刘子源 +2 位作者 曾非同 胡浩亮 周峰 《电测与仪表》 北大核心 2024年第11期107-115,共9页
电容式电压互感器(CVT)测量准确性关乎电能的准确计量,监测难点是误差变化微小不易察觉。针对CVT数据非严格满足高斯分布的特点,提出了基于非参数估计与滑动窗口改进的主成分分析(PCA)方法。对同一电压等级下的各CVT相位差与幅值进行Joh... 电容式电压互感器(CVT)测量准确性关乎电能的准确计量,监测难点是误差变化微小不易察觉。针对CVT数据非严格满足高斯分布的特点,提出了基于非参数估计与滑动窗口改进的主成分分析(PCA)方法。对同一电压等级下的各CVT相位差与幅值进行Johnson变换增强高斯性,由PCA分解为主成分与残差成分;在此基础上分别建立霍特林统计量(T^(2))和平方预测误差(Q);对待监测的T^(2)和Q先进行滑动窗口处理,再与控制限相比较,以判断角差和比差是否超差。控制限由CVT正常运行时的T^(2)和Q进行非参数估计得到。基于某变电站现场的CVT数据,通过人为施加固定/渐变偏差,该方法可有效识别±10′范围的角差超差与±0.2%范围的比差超差。 展开更多
关键词 非参数估计 滑动窗口 Johnson变换 主成分分析 电容式电压互感器 在线监测
下载PDF
个体化频带滑动窗特征的轻度认知障碍诊断研究
18
作者 李昕 屈中杰 +2 位作者 李梓澎 尹立勇 苏芮 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期182-189,共8页
轻度认知障碍(MCI)是老年性痴呆诊断的关键阶段,脑电(EEG)信号特征可以反映MCI患者的认知状态,帮助实现早期诊断。现有研究在EEG特征提取过程中,针对脑电各节律,大多采用固定的时间窗完成分段处理,忽略了不同节律的特征差异,从而影响诊... 轻度认知障碍(MCI)是老年性痴呆诊断的关键阶段,脑电(EEG)信号特征可以反映MCI患者的认知状态,帮助实现早期诊断。现有研究在EEG特征提取过程中,针对脑电各节律,大多采用固定的时间窗完成分段处理,忽略了不同节律的特征差异,从而影响诊断效果。针对该问题,本文提出了一种新的组合滑动窗优化算法,该算法通过迭代振幅调整傅里叶变换(IAAFT)对零模型的构建方法进行了改进,以此得到评估大脑动态特性指标KPLI,通过对EEG各频段信号采取多种滑动窗组合,并以KPLI指标引导,得到适合不同频段的最佳滑动窗组合。在最佳滑动窗组合基础上,对各频段组合提取相位滞后指数(PLI),进行连续小波变换(CWT)特征,通过ResNet-MLP双通道分类网络实现MCI诊断。结果显示,使用个性化组合频段滑动窗对88名受试者(32名MCI患者,36名阿尔茨海默症患者以及20名正常对照组)实现了诊断分类,得到了82.2%的分类准确率,比固定窗的分类提高了10%(得到了72.2%的分类准确率)。结果表明,基于个体化脑电节律特征组合能够更好提取MCI的特征,提高轻度认知障碍诊断的正确率与特异性,是一种有效的脑电特征提取方法。 展开更多
关键词 滑动窗 零模型 连续小波变换 相位滞后指数
下载PDF
基于消失点引导透视变换的车道线检测算法
19
作者 姚善化 李士杰 王仲根 《安徽理工大学学报(自然科学版)》 CAS 2024年第4期11-19,共9页
目的为解决车道线的位置会随着车辆或相机的偏移发生变化而导致车道线检测准确率低和适应性差的问题,提出了一种基于消失点引导透视变换的车道线检测算法。方法首先,采用自适应消失点坐标引导更新透视变换矩阵,将车道图像转换为车道线... 目的为解决车道线的位置会随着车辆或相机的偏移发生变化而导致车道线检测准确率低和适应性差的问题,提出了一种基于消失点引导透视变换的车道线检测算法。方法首先,采用自适应消失点坐标引导更新透视变换矩阵,将车道图像转换为车道线保存完整的鸟瞰图;其次,将其颜色特征和边缘特征进行融合,得到精准的二值化图像;最后,根据直方图分析定位车道线的基点,采用滑动窗口搜索的方法提取候选的车道线像素,然后对搜索到的车道线像素进行多项式拟合。在不同的道路场景下测试算法的性能,并与其它同类算法进行对比分析。结果仿真结果表明,算法的准确率为94.12%,平均每帧耗时85.35ms,在检测精度和速度方面优于对比的算法。结论该算法能有效解决车道线位置的改变对车道线检测性能的影响,具有更高的准确率和较好的适应性,在阴影遮挡、车道破损、恶劣天气等复杂道路环境的检测下,表现出良好的鲁棒性。 展开更多
关键词 车道线检测 自适应消失点 透视变换 特征融合 滑动窗口搜索
下载PDF
基于三相动态谐波分析的电能表误差检测方法
20
作者 王桐 张江 张理放 《电工技术》 2024年第4期102-104,共3页
在检测电能表误差时,原始信号中谐波的干扰会导致检测结果与实际情况存在较大偏差。为此,提出基于三相动态谐波分析的电能表误差检测方法。在谐波分析阶段,考虑到谐波的动态属性会导致三相信号的采样执行效果难以达到同步,构建了余弦组... 在检测电能表误差时,原始信号中谐波的干扰会导致检测结果与实际情况存在较大偏差。为此,提出基于三相动态谐波分析的电能表误差检测方法。在谐波分析阶段,考虑到谐波的动态属性会导致三相信号的采样执行效果难以达到同步,构建了余弦组合窗——旁瓣最低与最速下降窗,利用其对电能表离散信号进行截取,以此避免信号能量向临近谱线泄漏,再利用离散傅里叶变换对信号进行处理,实现对谐波的提取。在误差检测阶段,以离散随机信号的概率密度函数为导向,采用最优直方图曲线拟合法对其加以分析,并结合标准情况下电能表信号的分布状态,实现对误差的计算。在测试结果中,电能表误差检测结果的偏差始终稳定在3.0%以内。 展开更多
关键词 三相动态谐波分析 电能表误差 旁瓣最低与最速下降窗 离散傅里叶变换 概率密度函数 最优直方图曲线拟合法
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部