Z-pinch experiments with two arrays consisting, respectively, of 32 4-μm- and 6-μm-diameter tungsten wires have been carried out on QiangGuang-1 facility with a current rising up to 1.5 MA in 80 ns. At early time of...Z-pinch experiments with two arrays consisting, respectively, of 32 4-μm- and 6-μm-diameter tungsten wires have been carried out on QiangGuang-1 facility with a current rising up to 1.5 MA in 80 ns. At early time of implosion, x-ray framing images show that the initial emission comes from the central part of arrays, and double clear emission rings, drifting to the anode and the cathode at 5×10^6 cm/s and 2.4×10^7 cm/s respectively, are often produced near the electrodes. Later, in a 4-μm-diameter tungsten wire array, filamentation caused by ohmic heating is prominent, and more than ten filaments have been observed. A radial inward shift of arrays starts at about 30 ns earlier than the occurrence of the x-ray peak power for both kinds of arrays, and the shrinkage rate of emission region is as high as 1.7×107 cm/s in a 4-μm-diameter tungsten wire array, which is two times higher than that in a 6-μm one. Emission from precursor plasmas is observed in implosion of 6-μm-diameter tungsten wire arrays, but not in implosion of a 4- μm-diameter tungsten wire array. Whereas, in a 4-μm-diameter tungsten wire array, the soft x-ray emission shows the growth of m=l instability in the plasma column, which is caused by current. The reasons for the discrepancy between implosions of 4-μm- and 6-μm-diameter tungsten wire arrays are explained.展开更多
Spatially-resolved crystal spectrometers with a high spectral resolution are developed to diagnose K-shell x-ray radiation from Z-pinch plasmas. These diagnostic apparatuses are successfully applied to aluminum wire a...Spatially-resolved crystal spectrometers with a high spectral resolution are developed to diagnose K-shell x-ray radiation from Z-pinch plasmas. These diagnostic apparatuses are successfully applied to aluminum wire array Z-pinch experiments on QiangGuang-I facility, a driver with a pulsed current up to about 1.5 MA in 80 ns. Time-integrated experimental results show that the K-shell x-ray emission lines of aluminum Z-pinch plasmas are dominated by line emissions from helium-like ionisation state. Bright spots that might have higher electron temperature or density are produced randomly in location and size along the z-axis during implosions. According to the experimental data, the electron temperature and the ion density are estimated to be between 250 eV and 310 eV, and between 7.0× 10^19 cm-3 and 4.0 ×10^19 cm-3 respectively, while the ion temperature is inferred to be about 10.2 keV, which is much higher than the electron temperature.展开更多
We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The a...We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.展开更多
The resistance and inductance of a wire array during an implosion are very important parameters of interest to:researchers. A variety of inductances and resistances directly affect the kinetic energy and resistance h...The resistance and inductance of a wire array during an implosion are very important parameters of interest to:researchers. A variety of inductances and resistances directly affect the kinetic energy and resistance heat energy coupled from a pulsed-power generator. In this paper, the inductance and resistance of a planar wire array during the Z-pinch process are analyzed. The inductance is calculated from the data obtained by a time-resolved soft X-ray framed camera, while the resistance is calculated through the voltage and the current of the wire array load combined with the variety of the inductance. The results show that the resistance of the load increases with the development of the implosion, and reaches its maximum at 0.29 ± 0.16Ω near the pinched time.展开更多
Primarily experimental results are given for a W wire array Z pinch imploded with up to 2 MA in 100 ns on a Qiangguang-I pulsed power generator. The configuration and parameters of the generator, the W wire array load...Primarily experimental results are given for a W wire array Z pinch imploded with up to 2 MA in 100 ns on a Qiangguang-I pulsed power generator. The configuration and parameters of the generator, the W wire array load assembly and the diagnostic system for the experiment are described. The total X-ray energy has been obtained with a averaged power of X-ray radiation of 1.28 TW.展开更多
To investigate the imploding characteristics of cylindrical wire array, experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility. The complicated temporal-spatial distrib...To investigate the imploding characteristics of cylindrical wire array, experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility. The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system. Other diagnostic equipments including the x-ray power meter (XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images. Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion. Experimental results indicated that the better axial imploding synchrony, the faster the increase of x-ray power for an array consisting of 32 tungsten wires of 5 μm diameter than for the others, and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5. A ‘zipper-like' effect of x-ray radiation extending from the anode to the cathode was also observed.展开更多
Two dynamics modes, named short ablation mode and long ablation mode, are observed in implosion experiments of planar wire array Z pinch on 'QiangGuang-I' facility utilizing an optical streak camera. The long ablati...Two dynamics modes, named short ablation mode and long ablation mode, are observed in implosion experiments of planar wire array Z pinch on 'QiangGuang-I' facility utilizing an optical streak camera. The long ablation mode has a lagged trajectory compared with the short ablation mode. For shot 10035 in a short ablation mode, the initial time of K-shell radiation is consistent with the interaction time for ablation plasma arriving at the centre of wire array, while for shot 10038 in long ablation mode, the initial time of K-shell radiation is about 10 ns earlier. In the two modes, the partial ablation plasma could traverse the wire array plane and then collide in the centre to form a dense plasma column with a diameter of 2.2 mm for shot 10035 and 1.5 mm for shot 10038.展开更多
This work deals with an experimental study of a Cu planar wire array(PWA)in air and water under the stored energy 300-1200 J.A single Cu wire is adopted as a controlled trial.Four configurations of PWA and a wire with...This work deals with an experimental study of a Cu planar wire array(PWA)in air and water under the stored energy 300-1200 J.A single Cu wire is adopted as a controlled trial.Four configurations of PWA and a wire with the same mass(cross-section area)but the different specific surface areas(15-223 cm^(2)g^(-1))are exploded.The transient process is analyzed using high-speed photography in combination with the results of optical emission and discharge.Discharge characteristics revealed that PWA always has a higher electric power peak,early but higher voltage peak,as well as faster vaporization and ionization process than the single-wire case.Two to three times stronger optical emission could be obtained when replacing the single-wire with PWA,indicating a higher energy-density state is reached.Phenomenologically,in both air and water,single-wire load tends to develop a transverse stratified structure,while PWA is dominated by the uneven energy deposition among wires.Finally,the synchronism and uniformity of the PWA explosion are discussed.展开更多
An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic inte...An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.展开更多
With the aim of reducing series resistance and increasing dye loading,novel dye-sensitized solar cell architecture was designed with TiO2 nanoparticle-coated Ag nanowires array as the photoanode.Ag nanowire array was ...With the aim of reducing series resistance and increasing dye loading,novel dye-sensitized solar cell architecture was designed with TiO2 nanoparticle-coated Ag nanowires array as the photoanode.Ag nanowire array was prepared by anodic aluminum oxide (AAO) templateassisted electrochemical deposition route.Then,Ag nanowires were coated by TiO2 nanoparticles in hydrothermal process.The structures of the photoanode were characterized by field emission scanning electron microscopy (FESEM).Ag nanowires are covered by a layer of very fine nanoparticles with a diameter of less than 5 nm.X-ray diffraction (XRD) and selected-area electron diffraction (SAED) show that Ag nanowires have a strong preferred orientation in (220) direction and the TiO2 coating layer is a polycrystalline structure.With this photoanode,3.2 % conversion efficiency is achieved for the cell sensitized with N3 dye.展开更多
The current and the voltage of an X-pinch were measured. The inductance of the X-pinch was assumed to be a constant and estimated by the calculation of the magnetic field based on the well-known Biot–Savart’s Law. T...The current and the voltage of an X-pinch were measured. The inductance of the X-pinch was assumed to be a constant and estimated by the calculation of the magnetic field based on the well-known Biot–Savart’s Law. The voltage of the inductance was calculated with L · di/dt and subtracted from the measured voltage of the X-pinch. Then, the resistance of the X-pinch was determined and the following results were obtained. At the start of the current flow the resistance of the exploding wires is several tens of Ohms, one order of magnitude, higher than the metallic resistance of the wires at room temperature, and then it falls quickly to about 1 , which reflects the physical processes occurring in the electrically exploding wires, i.e., a current transition from the highly resistive wire core to the highly conductive plasma. It was shown that the inductive contribution to the voltage of the X-pinch is less than the resistive contribution. For the wires we used, the wires’ material and diameter have no strong influence on the resistance of the X-pinch, which may be explained by the fact that the current flows through the plasma rather than through the metallic wire itself. As a result, the current is almost equally divided between two parallel X-pinches even though the diameter and material of the wires used for these two X-pinches are significantly different.展开更多
In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero- dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an up...In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero- dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an upgraded version of the Simulation Program with Integrated Circuit Emphasis (SPICE) designed by the ORCAD Corporation to perform circuit simulations. This paper calculates different load parameters and discusses factors influencing the driving current curve. With appropriate driving current curves chosen, further magneto-hydrodynamic calculations are carried out and discussed to provide the best results for experiments. The suggested optimal load parameters play an important role in experimental load design.展开更多
A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the m...A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms, and study the dynamic focusing processes of cold atoms passing through the mag- netic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method. The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam, even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.展开更多
Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-...Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabri- cated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxida- tion in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were character- ized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt4Bi96/Au had a much higher catalytic activity than Pt11Bis89/Au and Pt13Bis87/Au, and Pt4Bi96/Au exhibited a current density of 2.7mA.cm^-2, which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.展开更多
The photoluminescence of porous silicon (PS)was reported and explained as nano meter quantum wire array. Soon after this, Ritcher et al. reported the first porous silicon electroluminescent device. At present, there a...The photoluminescence of porous silicon (PS)was reported and explained as nano meter quantum wire array. Soon after this, Ritcher et al. reported the first porous silicon electroluminescent device. At present, there are several models for the origin of PL phenomenon from porous silicon (cf. Refs. [3—6] ), while most researchers prefer the, quantum wire army (QWA) model. In the QWA model, it is considered that the quantum size effect ex-展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10035030).
文摘Z-pinch experiments with two arrays consisting, respectively, of 32 4-μm- and 6-μm-diameter tungsten wires have been carried out on QiangGuang-1 facility with a current rising up to 1.5 MA in 80 ns. At early time of implosion, x-ray framing images show that the initial emission comes from the central part of arrays, and double clear emission rings, drifting to the anode and the cathode at 5×10^6 cm/s and 2.4×10^7 cm/s respectively, are often produced near the electrodes. Later, in a 4-μm-diameter tungsten wire array, filamentation caused by ohmic heating is prominent, and more than ten filaments have been observed. A radial inward shift of arrays starts at about 30 ns earlier than the occurrence of the x-ray peak power for both kinds of arrays, and the shrinkage rate of emission region is as high as 1.7×107 cm/s in a 4-μm-diameter tungsten wire array, which is two times higher than that in a 6-μm one. Emission from precursor plasmas is observed in implosion of 6-μm-diameter tungsten wire arrays, but not in implosion of a 4- μm-diameter tungsten wire array. Whereas, in a 4-μm-diameter tungsten wire array, the soft x-ray emission shows the growth of m=l instability in the plasma column, which is caused by current. The reasons for the discrepancy between implosions of 4-μm- and 6-μm-diameter tungsten wire arrays are explained.
基金supported by the National Natural Science Foundation of China (Grant No. 10635050)
文摘Spatially-resolved crystal spectrometers with a high spectral resolution are developed to diagnose K-shell x-ray radiation from Z-pinch plasmas. These diagnostic apparatuses are successfully applied to aluminum wire array Z-pinch experiments on QiangGuang-I facility, a driver with a pulsed current up to about 1.5 MA in 80 ns. Time-integrated experimental results show that the K-shell x-ray emission lines of aluminum Z-pinch plasmas are dominated by line emissions from helium-like ionisation state. Bright spots that might have higher electron temperature or density are produced randomly in location and size along the z-axis during implosions. According to the experimental data, the electron temperature and the ion density are estimated to be between 250 eV and 310 eV, and between 7.0× 10^19 cm-3 and 4.0 ×10^19 cm-3 respectively, while the ion temperature is inferred to be about 10.2 keV, which is much higher than the electron temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10635050)
文摘We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s.
基金supported by National Natural Science Fundation of China(No.10905047)
文摘The resistance and inductance of a wire array during an implosion are very important parameters of interest to:researchers. A variety of inductances and resistances directly affect the kinetic energy and resistance heat energy coupled from a pulsed-power generator. In this paper, the inductance and resistance of a planar wire array during the Z-pinch process are analyzed. The inductance is calculated from the data obtained by a time-resolved soft X-ray framed camera, while the resistance is calculated through the voltage and the current of the wire array load combined with the variety of the inductance. The results show that the resistance of the load increases with the development of the implosion, and reaches its maximum at 0.29 ± 0.16Ω near the pinched time.
基金supported by National Natural Science Foundation of China (No. 10035020)
文摘Primarily experimental results are given for a W wire array Z pinch imploded with up to 2 MA in 100 ns on a Qiangguang-I pulsed power generator. The configuration and parameters of the generator, the W wire array load assembly and the diagnostic system for the experiment are described. The total X-ray energy has been obtained with a averaged power of X-ray radiation of 1.28 TW.
基金Project supported by the National Natural Science Foundation of China (Grant No 10035030).Acknowledgments Thanks to the crew of Qiangguang-1 facility for help in experiments and thanks to Ding Ning for many constructive suggestions.
文摘To investigate the imploding characteristics of cylindrical wire array, experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility. The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system. Other diagnostic equipments including the x-ray power meter (XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images. Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion. Experimental results indicated that the better axial imploding synchrony, the faster the increase of x-ray power for an array consisting of 32 tungsten wires of 5 μm diameter than for the others, and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5. A ‘zipper-like' effect of x-ray radiation extending from the anode to the cathode was also observed.
文摘Two dynamics modes, named short ablation mode and long ablation mode, are observed in implosion experiments of planar wire array Z pinch on 'QiangGuang-I' facility utilizing an optical streak camera. The long ablation mode has a lagged trajectory compared with the short ablation mode. For shot 10035 in a short ablation mode, the initial time of K-shell radiation is consistent with the interaction time for ablation plasma arriving at the centre of wire array, while for shot 10038 in long ablation mode, the initial time of K-shell radiation is about 10 ns earlier. In the two modes, the partial ablation plasma could traverse the wire array plane and then collide in the centre to form a dense plasma column with a diameter of 2.2 mm for shot 10035 and 1.5 mm for shot 10038.
基金supported in part by National Natural Science Foundation of China(No.51907007)Natural Science Foundation of Beijing(No.3212034)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(No.EIPE20204)State Key Laboratory of Advanced Electromagnetic Engineering and Technology(No.AEET 2019KF006)。
文摘This work deals with an experimental study of a Cu planar wire array(PWA)in air and water under the stored energy 300-1200 J.A single Cu wire is adopted as a controlled trial.Four configurations of PWA and a wire with the same mass(cross-section area)but the different specific surface areas(15-223 cm^(2)g^(-1))are exploded.The transient process is analyzed using high-speed photography in combination with the results of optical emission and discharge.Discharge characteristics revealed that PWA always has a higher electric power peak,early but higher voltage peak,as well as faster vaporization and ionization process than the single-wire case.Two to three times stronger optical emission could be obtained when replacing the single-wire with PWA,indicating a higher energy-density state is reached.Phenomenologically,in both air and water,single-wire load tends to develop a transverse stratified structure,while PWA is dominated by the uneven energy deposition among wires.Finally,the synchronism and uniformity of the PWA explosion are discussed.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0704402,2018YFB2201801,2018YFE0201200,and 2020YFB2205800)National Natural Science Foundation of China(Nos.61975075,61975076,and 62004094)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20200334)Jiangsu Science and Technology Project(No.BE2017003-2)。
文摘An 8-channel hybrid-integrated chip for 200 Gb/s(8×25 Gb/s)signal transmission has been demonstrated.The channels are all within the O-band,and with a spacing of 800 GHz.The core of this chip is a monolithic integrated multi-wavelength laser array of 8 directly-modulated distributed feedback(DFB)lasers.By using the reconstruction equivalent chirp technique,multi-wavelength integration and asymmetric phase shift structures are achieved in the laser array.The output laser beams of the array are combined by a planar light-wave circuit,which is hybrid-integrated with the laser array by photonic wire bonding.Experiment results of this transmitter chip show good single-mode working of each unit laser,with a sidemode suppression ratio above 50 dB,and the modulation bandwidth is above 20 GHz.Clear eye diagrams are obtained in the lasers for 25 Gb/s non-return-to-zero modulation,which implies a total 200 Gb/s transmission rate for the whole chip.
基金financially supported by the National Natural Science Foundation of China(No.51301041)
文摘With the aim of reducing series resistance and increasing dye loading,novel dye-sensitized solar cell architecture was designed with TiO2 nanoparticle-coated Ag nanowires array as the photoanode.Ag nanowire array was prepared by anodic aluminum oxide (AAO) templateassisted electrochemical deposition route.Then,Ag nanowires were coated by TiO2 nanoparticles in hydrothermal process.The structures of the photoanode were characterized by field emission scanning electron microscopy (FESEM).Ag nanowires are covered by a layer of very fine nanoparticles with a diameter of less than 5 nm.X-ray diffraction (XRD) and selected-area electron diffraction (SAED) show that Ag nanowires have a strong preferred orientation in (220) direction and the TiO2 coating layer is a polycrystalline structure.With this photoanode,3.2 % conversion efficiency is achieved for the cell sensitized with N3 dye.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51177086, 11135007, and 51237006)the Special Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800030037)the Research Fund of the State Key Laboratory of Power System (Grant No. SKLD09M05)
文摘The current and the voltage of an X-pinch were measured. The inductance of the X-pinch was assumed to be a constant and estimated by the calculation of the magnetic field based on the well-known Biot–Savart’s Law. The voltage of the inductance was calculated with L · di/dt and subtracted from the measured voltage of the X-pinch. Then, the resistance of the X-pinch was determined and the following results were obtained. At the start of the current flow the resistance of the exploding wires is several tens of Ohms, one order of magnitude, higher than the metallic resistance of the wires at room temperature, and then it falls quickly to about 1 , which reflects the physical processes occurring in the electrically exploding wires, i.e., a current transition from the highly resistive wire core to the highly conductive plasma. It was shown that the inductive contribution to the voltage of the X-pinch is less than the resistive contribution. For the wires we used, the wires’ material and diameter have no strong influence on the resistance of the X-pinch, which may be explained by the fact that the current flows through the plasma rather than through the metallic wire itself. As a result, the current is almost equally divided between two parallel X-pinches even though the diameter and material of the wires used for these two X-pinches are significantly different.
文摘In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero- dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an upgraded version of the Simulation Program with Integrated Circuit Emphasis (SPICE) designed by the ORCAD Corporation to perform circuit simulations. This paper calculates different load parameters and discusses factors influencing the driving current curve. With appropriate driving current curves chosen, further magneto-hydrodynamic calculations are carried out and discussed to provide the best results for experiments. The suggested optimal load parameters play an important role in experimental load design.
基金This work was supported by the National Natural Science Foundation of China (No.10174050, 10374029, and 10434060), the Shanghai Priority Academic Discipline,and the 211 Foundation of the Educational Ministry of China.
文摘A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms, and study the dynamic focusing processes of cold atoms passing through the mag- netic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method. The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam, even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.
文摘Direct formic acid fuel cells are a promising portable power-generating device, and the development of efficient anodic catalysts is essential for such a fuel cell. In this work Pt-Bi nanoparticles supported on micro-fabri- cated gold wire array substrate were synthesized using an electrochemical deposition method for formic acid oxida- tion in fuel cells. The surface morphology and element components of the Pt-Bi/Au nanoparticles were character- ized, and the catalytic activities of the three Pt-Bi/Au nanoparticle electrodes with different Pt/Bi ratios for formic acid oxidation were evaluated. It was found that Pt4Bi96/Au had a much higher catalytic activity than Pt11Bis89/Au and Pt13Bis87/Au, and Pt4Bi96/Au exhibited a current density of 2.7mA.cm^-2, which was 27-times greater than that of Pt/Au. The electro-catalytic activity of the Pt-Bi/Au electrode for formic acid oxidation increased with the increasing Bi content, suggesting that it would be possible to achieve an efficient formic acid oxidation on the low Pt-loading. Therefore, the Pt-Bi/Au electrode offers a promising catalyst with a high activity for direct oxidation of formic acid in fuel cells.
文摘The photoluminescence of porous silicon (PS)was reported and explained as nano meter quantum wire array. Soon after this, Ritcher et al. reported the first porous silicon electroluminescent device. At present, there are several models for the origin of PL phenomenon from porous silicon (cf. Refs. [3—6] ), while most researchers prefer the, quantum wire army (QWA) model. In the QWA model, it is considered that the quantum size effect ex-