期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Nanopowder production by gas-embedded electrical explosion of wire 被引量:2
1
作者 邹晓兵 毛志国 +1 位作者 王新新 江伟华 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期350-353,共4页
A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV–30 kV, a triggered gas switch, and... A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV–30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20nm–80nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /Ws ) increasing. 展开更多
关键词 electrical explosion of wire nanosized powders particle size
下载PDF
Influence of current injection ways on efficiency and size of powders in preparation of nano-powders with electrical explosion
2
作者 张爱华 吴龙 +2 位作者 杨富龙 周爱武 朱亮 《China Welding》 EI CAS 2014年第1期51-58,共8页
Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of e... Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of electrical explosion devices with different electrodes by gas discharge were designed in this paper. The pole-board electrodes and the cone electrodes were used respectively for studying copper wire electrical explosion process. The current and voltage data were measured with the Rogowski coil and high voltage probe. The results show that the pulverizing process of electrical explosion is more efficient when the wire electrode current density injected into the cone electrodes is approximately twice as much as the pole-board electrodes. The content of micro-sized large particles is the least among the products of the electrical explosion, when the total deposition energy of the wire prior to vaporization stage is 2. 5 times larger than that of the theoretical value of the completed vaporization. 展开更多
关键词 NANO-POWDERS wire electrical explosion gas discharge energy density
下载PDF
One-step synthesis of FeO(OH)nanoparticles by electric explosion of iron wire underwater
3
作者 Hao Yin Xin Gao Peng-wan Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第1期133-139,共7页
In this study,we investigated electric explosion of iron wire in distilled water with different energy input adjusted by charging voltage.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning e... In this study,we investigated electric explosion of iron wire in distilled water with different energy input adjusted by charging voltage.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS),showing the presence of iron and multiple iron-based compounds oxides with contents influenced by the experimental conditions.In particular,pure FeO(OH)nanoparticles were obtained using electric explosion of iron wire with energy input of 1125 J at charging voltage of 15 kV.Analysis of discharge current and resistive voltage data indicate that the high energy input induced bystrong plasma discharge at high charging voltage is a key factor to form FeO(OH).This study presents a one-step method to synthesize FeO(OH)nanoparticles using electric explosion of iron wire. 展开更多
关键词 Electric wire explosion Plasma tunnel Nanopartides FeO(OH)
下载PDF
Determining the resistance of X-pinch plasma 被引量:1
4
作者 赵屾 薛创 +7 位作者 朱鑫磊 张然 罗海云 邹晓兵 王新新 宁成 丁宁 束小建 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期344-349,共6页
The current and the voltage of an X-pinch were measured. The inductance of the X-pinch was assumed to be a constant and estimated by the calculation of the magnetic field based on the well-known Biot–Savart’s Law. T... The current and the voltage of an X-pinch were measured. The inductance of the X-pinch was assumed to be a constant and estimated by the calculation of the magnetic field based on the well-known Biot–Savart’s Law. The voltage of the inductance was calculated with L · di/dt and subtracted from the measured voltage of the X-pinch. Then, the resistance of the X-pinch was determined and the following results were obtained. At the start of the current flow the resistance of the exploding wires is several tens of Ohms, one order of magnitude, higher than the metallic resistance of the wires at room temperature, and then it falls quickly to about 1 , which reflects the physical processes occurring in the electrically exploding wires, i.e., a current transition from the highly resistive wire core to the highly conductive plasma. It was shown that the inductive contribution to the voltage of the X-pinch is less than the resistive contribution. For the wires we used, the wires’ material and diameter have no strong influence on the resistance of the X-pinch, which may be explained by the fact that the current flows through the plasma rather than through the metallic wire itself. As a result, the current is almost equally divided between two parallel X-pinches even though the diameter and material of the wires used for these two X-pinches are significantly different. 展开更多
关键词 electrical explosion of wires X-PINCH Z-PINCH
下载PDF
Mechanical alloying of platinum with 5% ZrO_2 nanoparticles for glass making tools
5
作者 Taek-Kyun JUNG Dong-Woo JOH +3 位作者 Seung-Yub LEE Myung-Sik CHOI Soong-Keun HYUN Hyo-Soo LEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第S1期99-105,共7页
Synthesis and characterization of mechanically alloyed Pt-5%ZrO2(volume fraction) for structural components in the glass industry were described. Zirconia(ZrO2) nanoparticles(<100 nm) were produced by the electrica... Synthesis and characterization of mechanically alloyed Pt-5%ZrO2(volume fraction) for structural components in the glass industry were described. Zirconia(ZrO2) nanoparticles(<100 nm) were produced by the electrical explosion of zirconium(Zr) wires, and blended with platinum(Pt) powders(<44 ?m) for 2-72 h in ambient atmosphere. The Pt particle size followed the typical decreasing trend of the normal ball milling process up to 48 h, but particle agglomeration was observed at 72 h. The grain size evolution was similar to that of the particle size, dropping down to around 50 nm at 48 h. The root mean square strain of the Pt crystallites showed the opposite behavior, maximizing at 48 h with a subsequent relaxation process. For the 48 h ball milled powders, spark plasma sintering was carried out to form a bulk disk. The measured mass loss of the sintered bulk sample shows a decent thermal stability despite its relatively low density. 展开更多
关键词 PLATINUM ZIRCONIA NANOPARTICLE electrical wire explosion mechanical alloying
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部