A new method using lead coated glass fiber to produce continuous wire for battery grid of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was introduced. Under equal flow, both the maximum and minimum ...A new method using lead coated glass fiber to produce continuous wire for battery grid of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was introduced. Under equal flow, both the maximum and minimum theoretical value of gap size were studied and estimation equation was established. The experimental results show that the gap size is a key parameter for the continuous coating extrusion process. Its maximum value (Hmax) is 0.24 mm and the minimum one (Hmin) is 0.12mm. At a gap size of 0.18 mm, the maximum of metal extrusion per unit of time and optimal coating speed could be obtained.展开更多
A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV–30 kV, a triggered gas switch, and...A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV–30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20nm–80nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /Ws ) increasing.展开更多
Pulsed wire discharge(PWD) is one of nano-sized powder production methods. The object of this work is to study influence of the plasma/vapor/particle density using computer simulation and to establish temperature meas...Pulsed wire discharge(PWD) is one of nano-sized powder production methods. The object of this work is to study influence of the plasma/vapor/particle density using computer simulation and to establish temperature measurement method using a high-speed infrared thermometer in the PWD process. The temperature correction coefficient was obtained from geometric computer simulation results. Obtained correction coefficient was applied to the temperature measuring results. It was found from this result that obtained correction coefficient was appropriate. A temperature measurement method was established by using the high-speed infrared thermometer in PWD.展开更多
文摘A new method using lead coated glass fiber to produce continuous wire for battery grid of electric vehicles (EVs) and hybrid electric vehicles (HEVs) was introduced. Under equal flow, both the maximum and minimum theoretical value of gap size were studied and estimation equation was established. The experimental results show that the gap size is a key parameter for the continuous coating extrusion process. Its maximum value (Hmax) is 0.24 mm and the minimum one (Hmin) is 0.12mm. At a gap size of 0.18 mm, the maximum of metal extrusion per unit of time and optimal coating speed could be obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50677034)the State Key Laboratory of Control and Simulation of Power System and Generation Equipment, China (Grant No. SKLD11M04)the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE12201)
文摘A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV–30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20nm–80nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy Wd is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /Ws ) increasing.
基金supported by Science and Technology Agency of Japan
文摘Pulsed wire discharge(PWD) is one of nano-sized powder production methods. The object of this work is to study influence of the plasma/vapor/particle density using computer simulation and to establish temperature measurement method using a high-speed infrared thermometer in the PWD process. The temperature correction coefficient was obtained from geometric computer simulation results. Obtained correction coefficient was applied to the temperature measuring results. It was found from this result that obtained correction coefficient was appropriate. A temperature measurement method was established by using the high-speed infrared thermometer in PWD.