To accurately evaluate and predict the covered effect of cowrapped yarn,a novel characterization is performed by covered ratio and fineness. Polyimide / metal wire co-wrapped yarn which was designed for applications i...To accurately evaluate and predict the covered effect of cowrapped yarn,a novel characterization is performed by covered ratio and fineness. Polyimide / metal wire co-wrapped yarn which was designed for applications in aerospace and composites was developed through hollow spindle spinning process. Core yarn speed,hollow spindle rotating speed,and wrapping yarn twist were selected as three main factors that affected spinning process. An empirical model indicating relationship between spinning parameters and covered effect was established based on response surface methodology( RSM). The results show that wrapping yarn twist contributes greatly to smooth wrapping process. Core yarn speed and spindle rotating speed are significant impact factors of covered effect and they interact significantly in covered ratio, but indistinctively in fineness.展开更多
目的胶囊内镜机器人受尺寸限制和安全性等因素的影响,传统锂电池或拖缆式供能已不能满足要求,如何提供有效的供能方式成为其发展的重大瓶颈。随着无线供能方式的提出,基于电磁感应的无线能量传输被视为一种有效解决该问题的供能方式。...目的胶囊内镜机器人受尺寸限制和安全性等因素的影响,传统锂电池或拖缆式供能已不能满足要求,如何提供有效的供能方式成为其发展的重大瓶颈。随着无线供能方式的提出,基于电磁感应的无线能量传输被视为一种有效解决该问题的供能方式。方法设计了一个在任意姿态下接收线圈均能高效稳定供能胶囊机器人的无线能量传输系统。首先设计了符合赫姆霍兹线圈结构的双螺线管对线圈作为发射线圈,再结合机器人结构特征设计新型的磁芯结构和绕线方式,构成新型三维正交接收线圈。最后在由发射线圈和体外控制电路组成的可调谐发射平台上进行了0~360°范围内系统有效接收效率的测试。结果该系统能量传输效率在线圈任意姿态不低于4.95%,解决了因接收线圈姿态变化导致的供能不足问题。结论在输入功率为10.88 W条件下能提供最少544 m W的能量,实验验证了该系统的可行性。展开更多
基金National Natural Science Foundation of China(No.11472077)Natural Science Foundation of Shanghai,China(No.13ZR1400500)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2232015D3-01)Innovation Experiment Programs for University Students,China(Nos.201410255024,201510255118)China National Textile and Apparel Cuncil(No.J201507)
文摘To accurately evaluate and predict the covered effect of cowrapped yarn,a novel characterization is performed by covered ratio and fineness. Polyimide / metal wire co-wrapped yarn which was designed for applications in aerospace and composites was developed through hollow spindle spinning process. Core yarn speed,hollow spindle rotating speed,and wrapping yarn twist were selected as three main factors that affected spinning process. An empirical model indicating relationship between spinning parameters and covered effect was established based on response surface methodology( RSM). The results show that wrapping yarn twist contributes greatly to smooth wrapping process. Core yarn speed and spindle rotating speed are significant impact factors of covered effect and they interact significantly in covered ratio, but indistinctively in fineness.
文摘目的胶囊内镜机器人受尺寸限制和安全性等因素的影响,传统锂电池或拖缆式供能已不能满足要求,如何提供有效的供能方式成为其发展的重大瓶颈。随着无线供能方式的提出,基于电磁感应的无线能量传输被视为一种有效解决该问题的供能方式。方法设计了一个在任意姿态下接收线圈均能高效稳定供能胶囊机器人的无线能量传输系统。首先设计了符合赫姆霍兹线圈结构的双螺线管对线圈作为发射线圈,再结合机器人结构特征设计新型的磁芯结构和绕线方式,构成新型三维正交接收线圈。最后在由发射线圈和体外控制电路组成的可调谐发射平台上进行了0~360°范围内系统有效接收效率的测试。结果该系统能量传输效率在线圈任意姿态不低于4.95%,解决了因接收线圈姿态变化导致的供能不足问题。结论在输入功率为10.88 W条件下能提供最少544 m W的能量,实验验证了该系统的可行性。