BACKGROUND The controlling nutritional status(CONUT)score effectively reflects a patient’s nutritional status,which is closely related to cancer prognosis.This study invest-igated the relationship between the CONUT s...BACKGROUND The controlling nutritional status(CONUT)score effectively reflects a patient’s nutritional status,which is closely related to cancer prognosis.This study invest-igated the relationship between the CONUT score and prognosis after radical surgery for colorectal cancer,and compared the predictive ability of the CONUT score with other indexes.AIM To analyze the predictive performance of the CONUT score for the survival rate of colorectal cancer patients who underwent potentially curative resection.METHODS This retrospective analysis included 217 patients with newly diagnosed colorectal.The CONUT score was calculated based on the serum albumin level,total lymphocyte count,and total cholesterol level.The cutoff value of the CONUT score for predicting prognosis was 4 according to the Youden Index by the receiver operating characteristic curve.The associations between the CONUT score and the prognosis were performed using Kaplan-Meier curves and Cox regression analysis.RESULTS Using the cutoff value of the CONUT score,patients were stratified into CONUT low(n=189)and CONUT high groups(n=28).The CONUT high group had worse overall survival(OS)(P=0.013)and relapse-free survival(RFS)(P=0.015).The predictive performance of CONUT was superior to the modified Glasgow prognostic score,the prognostic nutritional index,and the neutrophil-to-lymphocyte ratio.Meanwhile,the predictive performances of CONUT+tumor node metastasis(TNM)stage for 3-year OS[area under the receiver operating characteristics curve(AUC)=0.803]and 3-year RFS(AUC=0.752)were no less than skeletal muscle mass index(SMI)+TNM stage.The CONUT score was negatively correlated with SMI(P<0.01).CONCLUSION As a nutritional indicator,the CONUT score could predict long-term outcomes after radical surgery for colorectal cancer,and its predictive ability was superior to other indexes.The correlation between the CONUT score and skeletal muscle may be one of the factors that play a predictive role.展开更多
How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation...How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra...Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.展开更多
Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not w...The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.展开更多
Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la...Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
The Pinghu slope belt in the Xihu sag of the East China Sea Shelf Basin(ECSSB) is a crucial hydrocarbon production area in eastern China. However, due to the complex geological conditions, publications have lacked com...The Pinghu slope belt in the Xihu sag of the East China Sea Shelf Basin(ECSSB) is a crucial hydrocarbon production area in eastern China. However, due to the complex geological conditions, publications have lacked comprehensive research on the spatial-temporal coupling relationships of primary factors that impact hydrocarbon accumulation in the Pinghu slope belt. Furthermore, the hydrocarbon distribution patterns and the controlling factors across different study areas within the same slope belt are not yet fully understood. This study extensively utilized three-dimensional seismic data, well logging data,geochemical analysis, fluorescence analysis, and oil testing and production data to address these issues.Following a “stratification and differentiation” approach, the study identified seven distinct hydrocarbon migration and accumulation units(HMAU) in the Pinghu slope area based on the structural morphology characteristics, hydrocarbon source-reservoir-cap rock patterns, hydrocarbon migration pathways, and hydrocarbon supply range. Detailed analysis was conducted to examine the hydrocarbon distribution patterns and controlling factors within each migration and accumulation unit across different structural units, including high, medium, and low structural components. All data sources support a “southern-northern sub-area division, eastern-western sub-belt division, and variations in hydrocarbon accumulation” pattern in the Pinghu slope belt. The degree of hydrocarbon accumulation is controlled by the factors of structural morphology, hydrocarbon generation potential of source rocks, the spatial position of source slopes, fault sealing capacity, and sand body distribution. Furthermore, different coupling patterns of faults and sand bodies play a pivotal role in governing hydrocarbon enrichment systems across various migration and accumulation units. These observations indicate that three hydrocarbon accumulation patterns have been established within the slope belt, including near-source to far-source gentle slope with multiple hydrocarbon kitchens in the XP1-XP4 zones, near-source to middle-source gentle slope with dual-hydrocarbon kitchens in the XP5 zone, and near-source steep slope with a single hydrocarbon kitchen in the XP6-XP7 zones. These findings contribute to enhancing the theoretical system of hydrocarbon accumulation in the slope belt.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
The liver is in charge of distributing and regulating the movement of qi throughout the whole body,coordinating the transportation and transformation of the internal organs in the middle part of the body,promoting the...The liver is in charge of distributing and regulating the movement of qi throughout the whole body,coordinating the transportation and transformation of the internal organs in the middle part of the body,promoting the biochemical circulation of qi,blood,and body fluids,and regulating emotions.Liver dysfunction can disrupt the transportation and transformation of qi,blood,and body fluids,causing phlegm turbidity,blood stasis,and other unwanted symptoms.Poor regulation of emotion further aggravates the accumulation of pathological substances,resulting in the obstruction of heart vessels,and ultimately coronary heart disease(CHD).Through regulating lipid metabolism,inflammatory reaction,vasoactive substances,platelet function,neuroendocrine,and other factors,liver controlling dispersing qi plays a comprehensive role in the prognosis of atherosclerosis,the primary cause of CHD.Therefore,it is recommended to treat CHD from the perspective of liver-controlling dispersion.展开更多
BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of ...BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
The control of the clutch engagement for an automatic mechanical transmission in the process of a tracklayer getting to start is studied. The dynamic model of power transmission and automatic clutch system is develope...The control of the clutch engagement for an automatic mechanical transmission in the process of a tracklayer getting to start is studied. The dynamic model of power transmission and automatic clutch system is developed. Using tools of Simulink, the transient characteristics during the vehicle starting, including the jerk and the clutch slip time, are provided here. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed to control the clutch engagement. Simulation results verify its value.展开更多
The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was ob...The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.展开更多
In order to mitigate the occurrence and damage of cowpea whitefly, reduce chemical pesticide consumption, residue and environmental pollution, the methods of forecasting, randomized block design andstatistical analysi...In order to mitigate the occurrence and damage of cowpea whitefly, reduce chemical pesticide consumption, residue and environmental pollution, the methods of forecasting, randomized block design andstatistical analysis were used in field efficacy trials, to study the control effect of cowpea anthracnose by usingchemical pesticides dinotefuran, acetamiprid, pymetrozine, and bio-pesticide avermectin. The results showed that after applying 1.85% avermectin EC 375 g, 20% dinotefuran SP 600 g, 5% acetamiprid WP 600 g, and 25% pymetrozine WP 600 g (control pesticide) per hm2 once every 5-8 days, and 3 times continuously underserious autumn occurrence of greenhouse whitefly, the control efficacy was 90.9%, 97.0%, 88.0%, 93.9%respectively on the 7th day after the pesticides application; 97.4%, 92.1%, 84.2%, 89.4% respectively on the 14th day after the pesticides application; and 95.6%, 86.7%, 82.2%, 84.5%, respectively on the 20th day afterthe pesticides application. The control effects among avermectin, acetamiprid and pymetrozine were not significantly different, while the effects of avermectin and pymetrozine were significantly higher than that of acetamiprid on the 7th day. The control effects among avermectin, dinotefuran and pymetrozine were not significantly different, while significantly higher than that of acetamiprid on the 14th day. The control effect of avermectin was significantly higher than that of dinotefuran, acetamiprid and pymetrozine on the 20th day. Meanwhile, the control effect of avermectin was slightly lower, higher and much higher than that of dinotefuran on the 7th, 14th, 20th day respectively after the treatment. These results indicated that the four pesticides,especiaLly biopesticide avermectin, were ideal pesticides, which could not only be used for controlling cowpea whitefly, but also realize modern, green, organic and ecological agricultural production.展开更多
By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the ...By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.展开更多
In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress c...In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.展开更多
Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the ...Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the potential evapotranspiration over China and the temporal trends of the regional means for 10 major river basins and whole China are analyzed. Through a partial correlation analysis, the major climate factors which affect the temporal change of the potential evapotranspiration are analyzed. Major results are drawn as follows: 1) The seasonal and annual potential evapotranspiration for China as a whole and for most basins show decline tendencies during the past 45 years; for the Songhua River Basin there appears a slightly increasing trend. 2) Consequently, the annual potential evapotranspirations averaged over 1980-2000 are lower than those for the first water resources assessment (1956-1979) in most parts of China. Exceptions are found in some areas of Shandong Peninsula, western and middle basins of the rivers in Southwest China, Ningxia Hui Autonomous Region as well as the source regions of the Yangtze and Yellow rivers, which may have brought about disadvantages to the exploration and utilization of water resources. 3) Generally, sunshine duration, wind speed and relative humidity have greater impact on the potential evapotranspiration than temperature. Decline tendencies of sunshine duration and/or wind speed in the same period appear to be the major causes for the negative trend of the potential evapotranspiration in most areas.展开更多
基金Clinical Trials from the Affiliated Drum Tower Hospital,Medical School of Nanjing University,2022-LCYJ-PY-17CIMF-CSPEN Project,Z-2017-24-2211Project of Chinese Hospital Reform and Development Institute,Nanjing University and Aid project of Nanjing Drum Tower Hospital Health,Education&Research Foundation,NDYG2022090。
文摘BACKGROUND The controlling nutritional status(CONUT)score effectively reflects a patient’s nutritional status,which is closely related to cancer prognosis.This study invest-igated the relationship between the CONUT score and prognosis after radical surgery for colorectal cancer,and compared the predictive ability of the CONUT score with other indexes.AIM To analyze the predictive performance of the CONUT score for the survival rate of colorectal cancer patients who underwent potentially curative resection.METHODS This retrospective analysis included 217 patients with newly diagnosed colorectal.The CONUT score was calculated based on the serum albumin level,total lymphocyte count,and total cholesterol level.The cutoff value of the CONUT score for predicting prognosis was 4 according to the Youden Index by the receiver operating characteristic curve.The associations between the CONUT score and the prognosis were performed using Kaplan-Meier curves and Cox regression analysis.RESULTS Using the cutoff value of the CONUT score,patients were stratified into CONUT low(n=189)and CONUT high groups(n=28).The CONUT high group had worse overall survival(OS)(P=0.013)and relapse-free survival(RFS)(P=0.015).The predictive performance of CONUT was superior to the modified Glasgow prognostic score,the prognostic nutritional index,and the neutrophil-to-lymphocyte ratio.Meanwhile,the predictive performances of CONUT+tumor node metastasis(TNM)stage for 3-year OS[area under the receiver operating characteristics curve(AUC)=0.803]and 3-year RFS(AUC=0.752)were no less than skeletal muscle mass index(SMI)+TNM stage.The CONUT score was negatively correlated with SMI(P<0.01).CONCLUSION As a nutritional indicator,the CONUT score could predict long-term outcomes after radical surgery for colorectal cancer,and its predictive ability was superior to other indexes.The correlation between the CONUT score and skeletal muscle may be one of the factors that play a predictive role.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174041)China Postdoctoral Science Foundation (CPSF)(Grant No. 2022M723118)the seed grants from the Wenzhou Institute,University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
基金financially supported by the CNPC Prospective Basic Science and Technology Special Project(2023ZZ08)the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX050103)。
文摘Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated.
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42030804 and 42330811)the“Deep-time Digital Earth”Science and Technology Leading Talents Team Funds for the Central Universities for the Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing)(Fundamental Research Funds for the Central UniversitiesGrant No.2652023001)。
文摘The Lower Cambrian shale gas in the western Hubei area,South China has a great resource prospect,but the gas-in-place(GIP)content in different sedimentary facies varies widely,and the relevant mechanism has been not well understood.In the present study,two sets of the Lower Cambrian shale samples from the Wells YD4 and YD5 in the western Hubei area,representing the deep-water shelf facies and shallowwater platform facies,respectively,were investigated on the differences of pore types,pore structure and methane adsorption capacity between them,and the main controlling factor and mechanism of their methane adsorption capacities and GIP contents were discussed.The results show that the organic matter(OM)pores in the YD4 shale samples are dominant,while the inorganic mineral(IM)pores in the YD5 shale samples are primary,with underdeveloped OM pores.The pore specific surface area(SSA)and pore volume(PV)of the YD4 shale samples are mainly from micropores and mesopores,respectively,while those of the YD5 shale samples are mainly from micropores and macropores,respectively.The methane adsorption capacity of the YD4 shale samples is significantly higher than that of the YD5 shale samples,with a maximum absolute adsorption capacity of 3.13 cm^(3)/g and 1.31 cm^(3)/g in average,respectively.Compared with the shallow-water platform shale,the deep-water shelf shale has a higher TOC content,a better kerogen type and more developed OM pores,which is the main mechanism for its higher adsorption capacity.The GIP content models based on two samples with a similar TOC content selected respectively from the Wells YD4 and YD5 further indicate that the GIP content of the deep-water shelf shale is mainly 34 m^(3)/t within a depth range of 1000—4000 m,with shale gas exploration and development potential,while the shallow-water platform shale has normally a GIP content of<1 m^(3)/t,with little shale gas potential.Considering the geological and geochemical conditions of shale gas formation and preservation,the deep-water shelf facies is the most favorable target for the Lower Cambrian shale gas exploration and development in the western Hubei area,South China.
基金supported by the National Natural Science Foundation of China(42171129)the second Tibetan Plateau Scientific Expedition and Research(2019QZKK0208)Yunnan University Talent Introduction Research Project(YJRC3201702)。
文摘Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金funded by the Natural Science Foundation of Heilongjiang Province (LH 2022D013)supported by the Central Support Program for Young Talents in Local Universities in Heilongjiang Province (14011202101)Key Research and Development Plan Project of Heilongjiang Province (JD22A022)。
文摘The Pinghu slope belt in the Xihu sag of the East China Sea Shelf Basin(ECSSB) is a crucial hydrocarbon production area in eastern China. However, due to the complex geological conditions, publications have lacked comprehensive research on the spatial-temporal coupling relationships of primary factors that impact hydrocarbon accumulation in the Pinghu slope belt. Furthermore, the hydrocarbon distribution patterns and the controlling factors across different study areas within the same slope belt are not yet fully understood. This study extensively utilized three-dimensional seismic data, well logging data,geochemical analysis, fluorescence analysis, and oil testing and production data to address these issues.Following a “stratification and differentiation” approach, the study identified seven distinct hydrocarbon migration and accumulation units(HMAU) in the Pinghu slope area based on the structural morphology characteristics, hydrocarbon source-reservoir-cap rock patterns, hydrocarbon migration pathways, and hydrocarbon supply range. Detailed analysis was conducted to examine the hydrocarbon distribution patterns and controlling factors within each migration and accumulation unit across different structural units, including high, medium, and low structural components. All data sources support a “southern-northern sub-area division, eastern-western sub-belt division, and variations in hydrocarbon accumulation” pattern in the Pinghu slope belt. The degree of hydrocarbon accumulation is controlled by the factors of structural morphology, hydrocarbon generation potential of source rocks, the spatial position of source slopes, fault sealing capacity, and sand body distribution. Furthermore, different coupling patterns of faults and sand bodies play a pivotal role in governing hydrocarbon enrichment systems across various migration and accumulation units. These observations indicate that three hydrocarbon accumulation patterns have been established within the slope belt, including near-source to far-source gentle slope with multiple hydrocarbon kitchens in the XP1-XP4 zones, near-source to middle-source gentle slope with dual-hydrocarbon kitchens in the XP5 zone, and near-source steep slope with a single hydrocarbon kitchen in the XP6-XP7 zones. These findings contribute to enhancing the theoretical system of hydrocarbon accumulation in the slope belt.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
文摘The liver is in charge of distributing and regulating the movement of qi throughout the whole body,coordinating the transportation and transformation of the internal organs in the middle part of the body,promoting the biochemical circulation of qi,blood,and body fluids,and regulating emotions.Liver dysfunction can disrupt the transportation and transformation of qi,blood,and body fluids,causing phlegm turbidity,blood stasis,and other unwanted symptoms.Poor regulation of emotion further aggravates the accumulation of pathological substances,resulting in the obstruction of heart vessels,and ultimately coronary heart disease(CHD).Through regulating lipid metabolism,inflammatory reaction,vasoactive substances,platelet function,neuroendocrine,and other factors,liver controlling dispersing qi plays a comprehensive role in the prognosis of atherosclerosis,the primary cause of CHD.Therefore,it is recommended to treat CHD from the perspective of liver-controlling dispersion.
文摘BACKGROUND Inadequate glycemic control in patients with type 2 diabetes(T2DM)is a major public health problem and a significant risk factor for the progression of diabetic complications.AIM To evaluate the effects of intensive and supportive glycemic management strategies over a 12-month period in individuals with T2DM with glycated hemoglobin(HbA1c)≥10%and varying backgrounds of glycemic control.METHODS This prospective observational study investigated glycemic control in patients with poorly controlled T2DM over 12 months.Participants were categorized into four groups based on prior glycemic history:Newly diagnosed,previously well controlled with recent worsening,previously off-target but now worsening,and HbA1c consistently above 10%.HbA1c levels were monitored quarterly,and patients received medical,educational,and dietary support as needed.The analysis focused on the success rates of good glycemic control and the associated factors within each group.RESULTS The study showed significant improvements in HbA1c levels in all participants.The most significant improvement was observed in individuals newly diagnosed with diabetes:65%achieved an HbA1c target of≤7%.The results varied between participants with different glycemic control histories,followed by decreasing success rates:39%in participants with previously good glycemic control,21%in participants whose glycemic control had deteriorated compared to before,and only 10%in participants with persistently poor control,with mean HbA1c levels of 6.3%,7.7%,8.2%,and 9.7%,respectively.After one year,65.2%of the“newly diagnosed patients”,39.3%in the“previously controlled group”,21.9%in the“previously off-target but now worsened'”group and 10%in the“poorly controlled from the start”group had achieved HbA1c levels of 7 and below.CONCLUSION In poorly controlled diabetes,the rate at which treatment goals are achieved is associated with the glycemic background characteristics,emphasizing the need for tailored strategies.Therefore,different and comprehensive treatment approaches are needed for patients with persistent uncontrolled diabetes.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘The control of the clutch engagement for an automatic mechanical transmission in the process of a tracklayer getting to start is studied. The dynamic model of power transmission and automatic clutch system is developed. Using tools of Simulink, the transient characteristics during the vehicle starting, including the jerk and the clutch slip time, are provided here. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed to control the clutch engagement. Simulation results verify its value.
基金Project (50804018) supported by the National Natural Science Foundation of ChinaProject (ZDS2010015C) supported by Key Lab of Advanced Materials in Rare and Precious and Non-ferrous Metals, Ministry of Education, KMUST, ChinaProject (2010DH025) supported by Yunnan Province Construction Plans of Scientific and Technological Conditions, China
文摘The initial copper with large grain sizes of 60-100 μm was processed by six passes asymmetrical accumulative rolling-bond (AARB) and annealing, the ultra-fine-grained (UFG) copper with grain size of 200 nm was obtained, and the microstructures and properties were studied. The results show that there are large sub-structures and also texture component C for the UFG copper obtained by six passes AARB, possessing high strength and microhardness in company with poor elongation and conductivity. Thereafter, the UFG copper was annealed at 220 °C for 35 min, in which the sub-structures disappear, the grain boundaries are composed of big angle grain boundaries, and the textures are composed of a variety of texture components and parts of twins. Compared with the UFG copper obtained by six passes AARB, the tensile strength and yield strength for the UFG copper obtained by six passes AARB and annealing at 220 °C for 35 min are decreased slightly, the elongation and conductivity are improved obviously.
基金Supported by Approving on the First Batch of National Modern Agriculture Demonstration District by Ministry of Agriculture([2010]No.22)Fundamental Research Funds for the Central Universities(XDJK2016A020)~~
文摘In order to mitigate the occurrence and damage of cowpea whitefly, reduce chemical pesticide consumption, residue and environmental pollution, the methods of forecasting, randomized block design andstatistical analysis were used in field efficacy trials, to study the control effect of cowpea anthracnose by usingchemical pesticides dinotefuran, acetamiprid, pymetrozine, and bio-pesticide avermectin. The results showed that after applying 1.85% avermectin EC 375 g, 20% dinotefuran SP 600 g, 5% acetamiprid WP 600 g, and 25% pymetrozine WP 600 g (control pesticide) per hm2 once every 5-8 days, and 3 times continuously underserious autumn occurrence of greenhouse whitefly, the control efficacy was 90.9%, 97.0%, 88.0%, 93.9%respectively on the 7th day after the pesticides application; 97.4%, 92.1%, 84.2%, 89.4% respectively on the 14th day after the pesticides application; and 95.6%, 86.7%, 82.2%, 84.5%, respectively on the 20th day afterthe pesticides application. The control effects among avermectin, acetamiprid and pymetrozine were not significantly different, while the effects of avermectin and pymetrozine were significantly higher than that of acetamiprid on the 7th day. The control effects among avermectin, dinotefuran and pymetrozine were not significantly different, while significantly higher than that of acetamiprid on the 14th day. The control effect of avermectin was significantly higher than that of dinotefuran, acetamiprid and pymetrozine on the 20th day. Meanwhile, the control effect of avermectin was slightly lower, higher and much higher than that of dinotefuran on the 7th, 14th, 20th day respectively after the treatment. These results indicated that the four pesticides,especiaLly biopesticide avermectin, were ideal pesticides, which could not only be used for controlling cowpea whitefly, but also realize modern, green, organic and ecological agricultural production.
文摘By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.
基金supported by the Doctoral Foundation of North China Electric Power University (Grant No. kH0433)the International Science and Technology Cooperation Program (Grant No. 2007DFA71250)
文摘In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.
基金Chinese Ministry of Water Resources: Special Study to Water Resources Comprehensive Planning of China Ministry of Science and Technology of China, No.2001BA611B, Sida and STINT
文摘Based on the climatic data of 580 stations in China during 1956 and 2000, potential evapotranspiration are calculated using the Penman-Monteith Method recommended by FAO. The spatial and temporal distributions of the potential evapotranspiration over China and the temporal trends of the regional means for 10 major river basins and whole China are analyzed. Through a partial correlation analysis, the major climate factors which affect the temporal change of the potential evapotranspiration are analyzed. Major results are drawn as follows: 1) The seasonal and annual potential evapotranspiration for China as a whole and for most basins show decline tendencies during the past 45 years; for the Songhua River Basin there appears a slightly increasing trend. 2) Consequently, the annual potential evapotranspirations averaged over 1980-2000 are lower than those for the first water resources assessment (1956-1979) in most parts of China. Exceptions are found in some areas of Shandong Peninsula, western and middle basins of the rivers in Southwest China, Ningxia Hui Autonomous Region as well as the source regions of the Yangtze and Yellow rivers, which may have brought about disadvantages to the exploration and utilization of water resources. 3) Generally, sunshine duration, wind speed and relative humidity have greater impact on the potential evapotranspiration than temperature. Decline tendencies of sunshine duration and/or wind speed in the same period appear to be the major causes for the negative trend of the potential evapotranspiration in most areas.