期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Priority Based Energy Efficient MAC Protocol by Varying Data Ratefor Wireless Body Area Network
1
作者 R.Sangeetha Usha Devi Gandhi 《Computer Systems Science & Engineering》 2024年第2期395-411,共17页
Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor ... Wireless Body Area Network(WBAN)is a cutting-edge technology that is being used in healthcare applications to monitor critical events in the human body.WBAN is a collection of in-body and on-body sensors that monitor human physical parameters such as temperature,blood pressure,pulse rate,oxygen level,body motion,and so on.They sense the data and communicate it to the Body Area Network(BAN)Coordinator.The main challenge for the WBAN is energy consumption.These issues can be addressed by implementing an effective Medium Access Control(MAC)protocol that reduces energy consumption and increases network lifetime.The purpose of the study is to minimize the energy consumption and minimize the delay using IEEE 802.15.4 standard.In our proposed work,if any critical events have occurred the proposed work is to classify and prioritize the data.We gave priority to the highly critical data to get the Guarantee Tine Slots(GTS)in IEEE 802.15.4 standard superframe to achieve greater energy efficiency.The proposed MAC provides higher data rates for critical data based on the history and current condition and also provides the best reliable service to high critical data and critical data by predicting node similarity.As an outcome,we proposed a MAC protocol for Variable Data Rates(MVDR).When compared to existing MAC protocols,the MVDR performed very well with low energy intake,less interruption,and an enhanced packet-sharing ratio. 展开更多
关键词 wireless body area network(wban) IEEE 802.15.4 energy efficiency MAC protocol ZIGBEE
下载PDF
An Efficient Heterogeneous Ring Signcryption Scheme for Wireless Body Area Networks
2
作者 Qingqing Ning Chunhua Jin +2 位作者 Zhiwei Chen Yongliang Xu Huaqi Lu 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2061-2078,共18页
Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare pro... Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare providers.However,the open wireless channel and limited resources of sensors bring security challenges.To ensure physiological data security,this paper provides an efficient Certificateless Public Key Infrastructure Heterogeneous Ring Signcryption(CP-HRSC)scheme,in which sensors are in a certificateless cryptosystem(CLC)environment,and the server is in a public key infrastructure(PKI)environment.CLC could solve the limitations of key escrow in identity-based cryptography(IBC)and certificate management for public keys in PKI.While PKI is suited for the server because it is widely used on the Internet.Furthermore,this paper designs a ring signcryption method that allows the controller to anonymously encrypt physiological data on behalf of a set of sensors,but the server does not exactly know who the sensor is.The construction of this paper can achieve anonymity,confidentiality,authentication,non-repudiation,and integrity in a logically single step.Under the computational Diffie-Hellman(CDH)problem,the formal security proof is provided in the random oracle model(ROM).This paper demonstrates that this scheme has indistinguishability against adaptive chosen ciphertext attacks(IND-CCA2)and existential unforgeability against adaptive chosen message attacks(EUF-CMA).In terms of computational cost and energy usage,a comprehensive performance analysis demonstrates that the proposed scheme is the most effective.Compared to the three existing schemes,the computational cost of this paper’s scheme is reduced by about 49.5%,4.1%,and 8.4%,and the energy usage of our scheme is reduced by about 49.4%,3.7%,and 14.2%,respectively. 展开更多
关键词 wireless body area networks certificateless cryptosystem public key infrastructure SECURITY ring singncryption
下载PDF
Priority-based adaptive transmission algorithm for medical devices in wireless body area networks(WBANs)
3
作者 KIM Jinhyuk SONG Inseong CHOI Sangbang 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1762-1768,共7页
A wireless body area network offers cost-effective solutions for healthcare infrastructure. An adaptive transmission algorithm is designed to handle channel efficiency, which adjusts packet size according to the diffe... A wireless body area network offers cost-effective solutions for healthcare infrastructure. An adaptive transmission algorithm is designed to handle channel efficiency, which adjusts packet size according to the difference in feature-point values that indicate biomedical signal characteristics. Furthermore, we propose a priority-adjustment method that enhances quality of service while guaranteeing signal integrity. A large number of simulations were carried out for performance evaluation. We use electrocardiogram and electromyogram signals as reference biomedical signals for performance verification. From the simulation results, we find that the average packet latency of proposed scheme is enhanced by 30% compared to conventional method. The simulation results also demonstrate that the proposed algorithm achieves significant performance improvement in terms of drop rates of high-priority packets around 0.3%-0.9 %. 展开更多
关键词 wireless body area network channel efficiency quality of service
下载PDF
MAC Layer Resource Allocation for Wireless Body Area Networks
4
作者 Qinghua Shen Xuemin (Sherman) Shen +1 位作者 Tom H.Luan Jing Liu 《ZTE Communications》 2014年第3期13-21,共9页
Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to... Wireless body area networks (WBANs) can provide low-cost, timely healthcare services and are expected to be widely used for e-healthcare in hospitals. In a hospital, space is often limited and multiple WBANs have to coexist in an area and share the same channel in order to provide healthcare services to different patients. This causes severe interference between WBANs that could significantly reduce the network throughput and increase the amount of power consumed by sensors placed on the body. There-fore, an efficient channel-resource allocation scheme in the medium access control (MAC) layer is crucial. In this paper, we devel-op a centralized MAC layer resource allocation scheme for a WBAN. We focus on mitigating the interference between WBANs and reducing the power consumed by sensors. Channel and buffer state are reported by smartphones deployed in each WBAN, and channel access allocation is performed by a central controller to maximize network throughput. Sensors have strict limitations in terms of energy consumption and computing capability and cannot provide all the necessary information for channel allocation in a timely manner. This deteriorates network performance. We exploit the temporal correlation of the body area channel in order to minimize the number of channel state reports necessary. We view the network design as a partly observable optimization prob-lem and develop a myopic policy, which we then simulate in Matlab. 展开更多
关键词 medium access control (MAC) wireless body area networks (wbans resource allocation interference mitigation partially observable optimization
下载PDF
A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks 被引量:9
5
作者 Fengye Hu Lu Wang +2 位作者 Shanshan Wang Xiaolan Liu Gengxin He 《China Communications》 SCIE CSCD 2016年第8期198-208,共11页
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos... Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications. 展开更多
关键词 wireless body area networks BP neural network signal vector magnitude posture recognition rate
下载PDF
Power Allocation for Energy Harvesting in Wireless Body Area Networks 被引量:1
6
作者 Xiaolan Liu Fengye Hu +2 位作者 Meiqi Shao Dan Sui Gengxin He 《China Communications》 SCIE CSCD 2017年第6期22-31,共10页
Wireless Body Area Networks(WBANs) are expected to achieve high reliable communications among a large number of sensors.The outage probability can be used to measure the reliability of the WBAN.In this paper,we optimi... Wireless Body Area Networks(WBANs) are expected to achieve high reliable communications among a large number of sensors.The outage probability can be used to measure the reliability of the WBAN.In this paper,we optimize the outage probability with the harvested energy as constraints.Firstly,the optimal transmit power of the sensor is obtained while considering a single link between an access point(AP) located on the waist and a sensor attached on the wrist over the Rayleigh fading channel.Secondly,an optimization problem is formed to minimize the outage probability.Finally,we convert the non-convex optimization problem into convex solved by the Lagrange multiplier method.Simulations show that the optimization problem is solvable.The outage probability is optimized by performing power allocation at the sensor.And our proposed algorithm achieves minimizing the outage probability when the sensor uses energy harvesting.We also demonstrate that the average outage probability is reduced with the increase of the harvested energy. 展开更多
关键词 能量收集 功率分配 无线 区域网 拉格朗日乘子法 中断概率 优化问题 瑞利衰落信道
下载PDF
Distributed privacy protection strategy for MEC enhanced wireless body area networks 被引量:1
7
作者 Yan Zhen Hanyong Liu 《Digital Communications and Networks》 SCIE 2020年第2期229-237,共9页
With the rapid development and widespread application of Wireless Body Area Networks(WBANs),the traditional centralized system architecture cannot handle the massive data generated by the edge devices.Meanwhile,in ord... With the rapid development and widespread application of Wireless Body Area Networks(WBANs),the traditional centralized system architecture cannot handle the massive data generated by the edge devices.Meanwhile,in order to ensure the security of physiological privacy data and the identity privacy of patients,this paper presents a privacy protection strategy for Mobile Edge Computing(MEC)enhanced WBANs,which leverages the blockchain-based decentralized MEC paradigm to support efficient transmission of privacy information with low latency,high reliability within a high-demand data security scenario.On this basis,the Merkle tree optimization model is designed to authenticate nodes and to verify the source of physiological data.Furthermore,a hybrid signature algorithm is devised to guarantee the node anonymity with unforgeability,data integrity and reduced delay.The security performance analysis and simulation results show that our proposed strategy not only reduces the delay,but also secures the privacy and transmission of sensitive WBANs data. 展开更多
关键词 wireless body area networks Blockchain Mobile edge computing Hybrid signature algorithm Merkle tree optimization model
下载PDF
A Game Theoretic Approach for Inter-Network Interference Mitigation in Wireless Body Area Networks 被引量:1
8
作者 Du Dakun Hu Fengye +3 位作者 Wang Feng Wang Zhijun Du Yu Wang Lu 《China Communications》 SCIE CSCD 2015年第9期150-161,共12页
Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a sma... Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed. 展开更多
关键词 无线区域网络 干扰环境 博弈分析 功率控制算法 纳什均衡 功率消耗 系统吞吐量 医疗服务
下载PDF
An Efficient Energy Aware Routing Mechanism for Wireless Body Area Networks
9
作者 Wejdan Wasel Aljaghthami Mohammad Haseeb Zafar Afraa Zuhair Attiah 《Computers, Materials & Continua》 SCIE EI 2022年第1期1111-1126,共16页
The accelerated development of wireless network technology has resulted in the emergence of Wireless Body Area Network(WBAN),which is a technology commonly used in the medical field.WBAN consists of tiny sensor nodes ... The accelerated development of wireless network technology has resulted in the emergence of Wireless Body Area Network(WBAN),which is a technology commonly used in the medical field.WBAN consists of tiny sensor nodes that interconnect with each other and set in the human body to collect and transmit the patient data to the physician,to monitor the patients remotely.These nodes typically have limited battery energy that led to a shortage of network lifetime.Therefore,energy efficiency is considered one of the most demanding challenges in routing design for WBAN.Many proposed routing mechanisms inWBAN did not cover the source node energy and energy harvesting techniques.Therefore,this study proposes an Efficient Energy Aware Routing(EEAR)mechanism.This paper constructs a path cost function that considers three parameters:residual energy,number of hops to the sink,and the distance between the nodes.Besides,data aggregationwith filtration and hybrid energy harvesting technique are used to extend the network lifetime,reduce the network traffic load,andmaintain the source node energy.Extensive simulations using MATLAB have been performed to evaluate the performance of the proposed mechanism.EEAR is contrasted with the two latest schemes,called Priority-based Congestion-avoidance Routing Protocol(PCRP)and Energy Efficient Routing Protocol(EERP).The results show the significant performance of theEEARmechanism in terms of network lifetime,residual energy,network stability,and throughput. 展开更多
关键词 wireless body area network routing protocol energy efficiency network lifetime energy harvesting
下载PDF
A Review of Wireless Body Area Networks for Medical Applications
10
作者 Sana ULLAH Pervez KHAN +3 位作者 Niamat ULLAH Shahnaz SALEEM Henry HIGGINS Kyung Sup KWAK 《International Journal of Communications, Network and System Sciences》 2009年第8期797-803,共7页
Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive amb... Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time, and provide real-time updates of the patient’s status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for a WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solu-tions towards in-body and on-body sensor networks. 展开更多
关键词 wireless body area networks Low Power MAC body SENSOR networks BSN wban
下载PDF
Black Hole and Sink Hole Attack Detection in Wireless Body Area Networks
11
作者 Rajesh Kumar Dhanaraj Lalitha Krishnasamy +1 位作者 Oana Geman Diana Roxana Izdrui 《Computers, Materials & Continua》 SCIE EI 2021年第8期1949-1965,共17页
In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthca... In Wireless Body Area Networks(WBANs)with respect to health care,sensors are positioned inside the body of an individual to transfer sensed data to a central station periodically.The great challenges posed to healthcare WBANs are the black hole and sink hole attacks.Data from deployed sensor nodes are attracted by sink hole or black hole nodes while grabbing the shortest path.Identifying this issue is quite a challenging task as a small variation in medicine intake may result in a severe illness.This work proposes a hybrid detection framework for attacks by applying a Proportional Coinciding Score(PCS)and an MK-Means algorithm,which is a well-known machine learning technique used to raise attack detection accuracy and decrease computational difficulties while giving treatments for heartache and respiratory issues.First,the gathered training data feature count is reduced through data pre-processing in the PCS.Second,the pre-processed features are sent to the MK-Means algorithm for training the data and promoting classification.Third,certain attack detection measures given by the intrusion detection system,such as the number of data packages trans-received,are identified by the MK-Means algorithm.This study demonstrates that the MK-Means framework yields a high detection accuracy with a low packet loss rate,low communication overhead,and reduced end-to-end delay in the network and improves the accuracy of biomedical data. 展开更多
关键词 wireless body area network black hole attack sink hole attack proportional coinciding score intrusion detection correlation rate
下载PDF
A novel nest-based scheduling method for mobile wireless body area networks
12
作者 Zhijun Xie Guangyan Huang +3 位作者 Roozbeh Zarei Zhenyan Ji Hongwu Ye Jing He 《Digital Communications and Networks》 SCIE 2020年第4期514-523,共10页
Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers fro... Wireless Body Area Networks(WBANs)comprise various sensors to monitor and collect various vital signals,such as blood pressure,pulse,heartbeat,body temperature,and blood sugar.A dense and mobile WBAN often suffers from interference,which causes serious problems,such as wasting energy and degrading throughput.In reality,not all of the sensors in WBAN need to be active at the same time.Therefore,they can be divided into different groups so that each group works in turn to avoid interference.In this paper,a Nest-Based WBAN Scheduling(NBWS)algorithm is proposed to cluster sensors of the same types in a single or multiple WBANs into different groups to avoid interference.Particularly,we borrow the graph coloring theory to schedule all groups to work using a Time Division for Multimodal Sensor(TDMS)group scheduling model.Both theoretical analysis and experimental results demonstrate that the proposed NBWS algorithm performs better in terms of frequency of collisions,transmission delay,system throughput,and energy consumption compared to the counterpart methods. 展开更多
关键词 Interference elimination NEST SENSORS SCHEDULING wireless body area networks Graph coloring theory
下载PDF
Wireless Body Area Networks for Pervasive Healthcare and Smart Environments
13
作者 Victor C.M.Leung Hongke Zhang 《ZTE Communications》 2014年第3期1-2,共2页
Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, a... Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored. 展开更多
关键词 wban body LEACH wireless body area networks for Pervasive Healthcare and Smart Environments
下载PDF
Adaptive Multi-Cost Routing Protocol to Enhance Lifetime for Wireless Body Area Network
14
作者 Muhammad Mateen Yaqoob Waqar Khurshid +4 位作者 Leo Liu Syed Zulqarnain Arif Imran Ali Khan Osman Khalid Raheel Nawaz 《Computers, Materials & Continua》 SCIE EI 2022年第7期1089-1103,共15页
Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to con... Wireless Body Area Network(WBAN)technologies are emerging with extensive applications in several domains.Health is a fascinating domain of WBAN for smart monitoring of a patient’s condition.An important factor to consider in WBAN is a node’s lifetime.Improving the lifetime of nodes is critical to address many issues,such as utility and reliability.Existing routing protocols have addressed the energy conservation problem but considered only a few parameters,thus affecting their performance.Moreover,most of the existing schemes did not consider traffic prioritization which is critical in WBANs.In this paper,an adaptive multi-cost routing protocol is proposed with a multi-objective cost function considering minimum distance from sink,temperature of sensor nodes,priority of sensed data,and maximum residual energy on sensor nodes.The performance of the proposed protocol is compared with the existing schemes for the parameters:network lifetime,stability period,throughput,energy consumption,and path loss.It is evident from the obtained results that the proposed protocol improves network lifetime and stability period by 30%and 15%,respectively,as well as outperforms the existing protocols in terms of throughput,energy consumption,and path loss. 展开更多
关键词 Multi-cost routing protocol network lifetime wireless body area network adaptive routing residual energy CLUSTERING poisson distribution
下载PDF
Remote Health Monitoring Using IoT-Based Smart Wireless Body Area Network
15
作者 Farhan Aadil Bilal Mehmood +3 位作者 Najam Ul Hasan Sangsoon Lim Sadia Ejaz Noor Zaman 《Computers, Materials & Continua》 SCIE EI 2021年第8期2499-2513,共15页
A wireless body area network(WBAN)consists of tiny healthmonitoring sensors implanted in or placed on the human body.These sensors are used to collect and communicate human medical and physiological data and represent... A wireless body area network(WBAN)consists of tiny healthmonitoring sensors implanted in or placed on the human body.These sensors are used to collect and communicate human medical and physiological data and represent a subset of the Internet of Things(IoT)systems.WBANs are connected to medical servers that monitor patients’health.This type of network can protect critical patients’lives due to the ability to monitor patients’health continuously and remotely.The inter-WBAN communication provides a dynamic environment for patients allowing them to move freely.However,during patient movement,the WBAN patient nodes may become out of range of a remote base station.Hence,to handle this problem,an efficient method for inter-WBAN communication is needed.In this study,a method using a cluster-based routing technique is proposed.In the proposed method,a cluster head(CH)acts as a gateway between the cluster members and the external network,which helps to reduce the network’s overhead.In clustering,the cluster’s lifetime is a vital parameter for network efficiency.Thus,to optimize the CH’s selection process,three evolutionary algorithms are employed,namely,the ant colony optimization(ACO),multi-objective particle swarm optimization(MOPSO),and the comprehensive learning particle swarm optimization(CLPSO).The performance of the proposed method is verified by extensive experiments by varying values of different parameters,including the transmission range,node number,node mobility,and grid size.A comprehensive comparative analysis of the three algorithms is conducted by extensive experiments.The results show that,compared with the other methods,the proposed ACO-based method can form clusters more efficiently and increase network lifetime,thus achieving remarkable network and energy efficiency.The proposed ACO-based technique can also be used in other types of ad-hoc networks as well. 展开更多
关键词 wireless body area network CLUSTERING internet of things evolutionary algorithm ant colony optimization
下载PDF
Optimal allocation of random access period for wireless body area network
16
作者 Jin hyuk KIM Chang ki HONG Sang bang CHOI 《Journal of Central South University》 SCIE EI CAS 2013年第8期2195-2201,共7页
A wireless body area network (WBAN) allows integration of low power, invasive or noninvasive miniaturized sensors around a human body. WBAN is expected to become a basic infrastructure element for human health monitor... A wireless body area network (WBAN) allows integration of low power, invasive or noninvasive miniaturized sensors around a human body. WBAN is expected to become a basic infrastructure element for human health monitoring. The Task Group 6 of IEEE 802.15 is formed to address specific needs of body area network. It defines a medium access control layer that supports various physical layers. In this work, we analyze the efficiency of simple slotted ALOHA scheme, and then propose a novel allocation scheme that controls the random access period and packet transmission probability to optimize channel efficiency. NS-2 simulations have been carried out to evaluate its performance. The simulation results demonstrate significant performance improvement in latency and throughput using the proposed MAC algorithm. 展开更多
关键词 优化配置 随机访问 无线 时隙ALOHA 性能改善 微型传感器 数据包传输 MAC算法
下载PDF
11 GHz不同室内场景的WBAN信道特性研究
17
作者 魏苏皖 杨丽花 +3 位作者 薛寒 马嘉文 杨钦 吕文俊 《南京邮电大学学报(自然科学版)》 北大核心 2024年第2期53-61,共9页
为了探索高频段室内无线体域网通信的可行性,对11 GHz室内无线体域网的传播特性进行了测量与研究。基于大量的测量数据,给出了11 GHz频段室内无线体域网的路径损耗、阴影效应与均方根时延扩展的统计特性。针对体对体通信时人体相对角度... 为了探索高频段室内无线体域网通信的可行性,对11 GHz室内无线体域网的传播特性进行了测量与研究。基于大量的测量数据,给出了11 GHz频段室内无线体域网的路径损耗、阴影效应与均方根时延扩展的统计特性。针对体对体通信时人体相对角度变化的场景,提出了一种具有相对角度影响的路径损耗模型,该模型利用了与身体角度相关的路径损耗指数、浮动截距以及身体角度因子修正相对角度变化引入的路径损耗。为了验证模型的适用性,对比分析了在小型空教室和大型会议室两种不同场景下相对角度变化对信道传播特性的影响。研究结果表明:在收发端距离固定的情况下,路径损耗指数、浮动截距和由相对角度引起的路径损耗(Path Loss caused by Relative Angle,PLRA)均与相对角度具有三角函数关系;在收发端相对角度固定时,PLRA与收发端距离无关,仅与相对角度有关。上述研究结果可以为11 GHz频段在未来室内无线体域网的使用提供理论基础与实践依据。 展开更多
关键词 高频段 体域网 室内场景 路径损耗 均方根时延 相对角度
下载PDF
Design and Analysis of a Compact Band Notch UWB Antenna for Body Area Network
18
作者 H. M. Arifur Rahman Mohammad Monirujjaman Khan 《Journal of Electromagnetic Analysis and Applications》 2018年第9期157-169,共13页
This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly ... This paper presents the design of a small printed ultra wideband antenna with Band Notched characteristics. Both the free space and on-body performances of this antenna were investigated through simulation. The newly designed UWB antenna is more revised small form factor sized, with the ability to avoid interference caused by WLAN (5.15 - 5.825 GHz) and WiMAX (5.25 - 5.85 GHz) systems with a band notch. The return loss response, gain, radiation pattern on free space of the antenna were investigated. After that, the on-body performances were tested on 3-layer human body model with radiation pattern, gain, return loss, and efficiency at 3.5, 5.7, 8, 10 GHz and all the results were compared with free space results. As the on-body performance was very good, the proposed antenna will be suitable to be used for multi-purpose medical applications and sports performance monitoring. 展开更多
关键词 Ultra Wide BAND ANTENNA Small Form Factor ANTENNA body area networks BAND NOTCH Printed ANTENNA wireless body area network Multiple SLOT ANTENNA
下载PDF
基于非合作博弈的WBANs功率控制算法 被引量:2
19
作者 许勇 柯梦雅 +1 位作者 刘芬 查千明 《系统仿真学报》 CAS CSCD 北大核心 2018年第4期1601-1607,共7页
针对基于TDMA媒体访问控制方式的无线体域网间干扰模型,利用非合作博弈自适应功率控制算法对体域网中的用户进行功率分配。该算法为用户构造了由收益函数和代价函数所表示的效用函数模型,根据最佳响应策略的迭代方案获得功率控制的纳什... 针对基于TDMA媒体访问控制方式的无线体域网间干扰模型,利用非合作博弈自适应功率控制算法对体域网中的用户进行功率分配。该算法为用户构造了由收益函数和代价函数所表示的效用函数模型,根据最佳响应策略的迭代方案获得功率控制的纳什均衡策略,使体域网中所有用户的效用函数达到最优化。通过Matlab对不同参数的情况进行仿真,与传统的功率分配方案K-G相比,仿真结果表明,基于非合作博弈自适应功率控制算法有较好的收敛性,当价格因子在3.5-6.9时,体域网的总体效能提高。 展开更多
关键词 无线体域网 功率控制算法 非合作博弈 网间干扰
下载PDF
Sensing, Signal Processing, and Communication for WBANs
20
作者 Seyyed Hamed Fouladi Raúl Chávez-Santiago +2 位作者 Pl Ander Floor Ilangko Balasingham Tor A.Ramstad 《ZTE Communications》 2014年第3期3-12,共10页
A wireless body area network (WBAN) enables real-time monitoring of physiological signals and helps with the early detection of life-threatening diseases. WBAN nodes can be located on, inside, or in close proximity ... A wireless body area network (WBAN) enables real-time monitoring of physiological signals and helps with the early detection of life-threatening diseases. WBAN nodes can be located on, inside, or in close proximity to the body in order to detect vital signals. Measurements from sensors are processed and transmitted over wireless channels. Issues in sensing, signal processing, and com-munication have to be addressed before WBAN can be implemented. In this paper, we survey recent advances in research on sig-nal processing for the sensor measurements, and we describe aspects of communication based on IEEE 802.15.6. We also discuss state-of-the-art WBAN channel modeling in all the frequencies specified by IEEE 802.15.6 as well as the need for new channel models for new different frequencies. 展开更多
关键词 wireless body area network IEEE 802.15.6 signal processing SECURITY channel modeling
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部