In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represe...In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.展开更多
The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the contro...The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes in...In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.展开更多
In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical a...In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.展开更多
In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network pe...In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.展开更多
This paper proposed a novel RED protocol which takes the node’s energy into account depending on the length of the data packet. It also proposed a routing protocol for wireless sensor networks with congestion control...This paper proposed a novel RED protocol which takes the node’s energy into account depending on the length of the data packet. It also proposed a routing protocol for wireless sensor networks with congestion control which imitates the ant colony foraging behavior. Sensor nodes choose routings according to the pheromone density. The experiment result shows that the algorithm balances the energy consumption of each node. It mitigated congestion effectively with the proposed routing protocol.展开更多
The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-ener...The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.展开更多
Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between...Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).展开更多
In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy...In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.展开更多
In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to a...In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.展开更多
This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Mar...This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Markov models for both modes are identical. Performability models are then developed and a case study shows how to use these models to help make design decisions. More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time.展开更多
The design of a wireless water level control system is introduced and discussed in detail. In this system, the wireless Proportional Integral (PI) controller is developed using the LabVIEW graphical user programming l...The design of a wireless water level control system is introduced and discussed in detail. In this system, the wireless Proportional Integral (PI) controller is developed using the LabVIEW graphical user programming language. Zigbee wireless technology is chosen for the wireless data transfer system. The experimental testbed was built and the system software and hardware were implemented. In order to compare the performance of the wired and wireless system, a corresponding wired water level control system was built. Experimental results show that under the same PI parameters, the settling time of the wired system is 3.3 times faster than the wireless system. However, the percent overshoot using the wireless controller is 4% smaller.展开更多
We consider the problem of fair rate control for wireless ad-hoc networks with time varying channel capacities. The interaction between links in wireless ad-hoc networks introduces additional constraints on the flow r...We consider the problem of fair rate control for wireless ad-hoc networks with time varying channel capacities. The interaction between links in wireless ad-hoc networks introduces additional constraints on the flow rate. A primal-dual algorithm that guarantees fair rate control is proved to be trajectory stable. Various fairness indexes are obtained by choosing the specified form of the utility functions, and the numerical results validate the effectiveness of the proposed algorithm.展开更多
Mobility in Wireless Sensor Network (WSN) presents distinctive challenges in Medium Access Control (MAC) scheme. Numerous MAC protocols for sensor networks assume that sensor nodes are static and focus primarily on en...Mobility in Wireless Sensor Network (WSN) presents distinctive challenges in Medium Access Control (MAC) scheme. Numerous MAC protocols for sensor networks assume that sensor nodes are static and focus primarily on energy efficiency. This work seeks to develop an improved mobility conscious medium access control scheme for wireless sensor networks with a view to enhance energy conservation on mobile sensor nodes. On this note, mobility patterns of different scenarios are modelled using Gauss Markov Mobility Model (GMMM) to determine the position and distance of the sensor nodes and how they are correlated in time.展开更多
Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organizat...Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,展开更多
基金supported by Science Fund for Distinguished Young Scholars of Hebei Province (No. F2011203110)Program for New Century Excellent Talents in the University of China (No. NCET-08-0658)+2 种基金National Natural Science Foundation of China (No. 60974018, No. 60934003)National Basic Research Program of China (973 Program) (No. 2010CB731800)Key Project for Natural Science Research of Hebei Education Department (No. ZD200908)
文摘In this paper, the stabilization problem is considered for the class of wireless networked control systems (WNCS). An indicator is introduced in the WNCS model. The packet drop sequences in the indicator are represented as states of a Markov chain. A new discrete Markov switching system model integrating 802.11 protocol and new scheduling approach for wireless networks with control systems are constructed. The variable controller can be obtained easily by solving the linear matrix inequality (LMI) with the use of the Matlab toolbox. Both the known and unknown dropout probabilities are considered. Finally, a simulation is given to show the feasibility of the proposed method.
基金Project(61104106)supported by the National Natural Science Foundation of ChinaProject(201202156)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100)supported by the Program for Liaoning Excellent Talents in University(LNET),China
文摘The stability analysis and stabilization problems of the wireless networked control systems(WNCSs) with signal transmission deadbands were considered. The deadbands were respectively set up at the sensor to the controller and the controller to the actor sides in the WNCS, which were used to reduce data transmission, furthermore, to decrease the network collision and node energy consumption. Under the consideration of time-varying delays and signal transmission deadbands, the model for the WNCS was presented. A novel Lyapunov functional which took full advantages of the network factors was exploited. Meanwhile, new stability analysis and stabilization conditions for the WNCS were proposed, which described the relationship of the delay bounds, the transmission deadband bounds and the system stability. Two examples were used to demonstrate the effectiveness of the proposed methods. The results show that the proposed approach can guarantee asymptotical stability of the system and reduce the data transmission effectively.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金Project supported by the National Natural Science Foundation of China(Grant No.61403336)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2015203342 and F2015203291)the Independent Research Project Topics B Category for Young Teacher of Yanshan University,China(Grant No.15LGB007)
文摘In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.
基金Supported by National Natural Science Foundation of China 60404022, 60704009), National Outstanding Youth Foundation 60525303), and Natural Science Foundation of Hebei Province F2005000390, F2006000270)
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012082)+2 种基金the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province,China (Grant No. CXZZ11 0401)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2011JM8012)the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force (Grant No. WJY201218)
文摘In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.
基金supported in part by National Key Basic Research Program of China(973 program)under Grant No.2007CB307101National Natural Science Foundation of China under Grant No.60833002,60802016,60972010
文摘In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.
文摘This paper proposed a novel RED protocol which takes the node’s energy into account depending on the length of the data packet. It also proposed a routing protocol for wireless sensor networks with congestion control which imitates the ant colony foraging behavior. Sensor nodes choose routings according to the pheromone density. The experiment result shows that the algorithm balances the energy consumption of each node. It mitigated congestion effectively with the proposed routing protocol.
基金supported by by National Natural Science Founda-tion of China (No. 60702055)Program for New Century ExcellentTalents in University (NCET-07-0914)the Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ070521)
文摘The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
文摘Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).
文摘In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.
文摘In this paper, we propose a novel clustering topology control algorithm named Minimum Spanning Tree (MST)-based Clustering Topology Control (MCTC) for Wireless Sensor Networks (WSNs), which uses a hybrid approach to adjust sensor nodes' transmission power in two-tiered hi- erarchical WSNs. MCTC algorithm employs a one-hop Maximum Energy & Minimum Distance (MEMD) clustering algorithm to decide clustering status. Each cluster exchanges information between its own Cluster Members (CMs) locally and then deliveries information to the Cluster Head (CH). Moreover, CHs exchange information between CH and CH and afterwards transmits aggregated in- formation to the base station finally. The intra-cluster topology control scheme uses MST to decide CMs' transmission radius, similarly, the inter-cluster topology control scheme applies MST to decide CHs' transmission radius. Since the intra-cluster topology control is a full distributed approach and the inter-cluster topology control is a pure centralized approach performed by the base station, therefore, MCTC algorithm belongs to one kind of hybrid clustering topology control algorithms and can obtain scalability topology and strong connectivity guarantees simultaneously. As a result, the network topology will be reduced by MCTC algorithm so that network energy efficiency will be improved. The simulation results verify that MCTC outperforms traditional topology control schemes such as LMST, DRNG and MEMD at the aspects of average node's degree, average node's power radius and network lifetime, respectively.
文摘This paper investigates the performability of hierarchical Wireless Networked Control Systems (WNCS). The WNCS studied can operate in two modes: passive supervisor and active supervisor. It is first shown that the Markov models for both modes are identical. Performability models are then developed and a case study shows how to use these models to help make design decisions. More specifically, it is observed that the performability of a passive supervisor system increases in time while that of an active supervisor system decreases in time.
文摘The design of a wireless water level control system is introduced and discussed in detail. In this system, the wireless Proportional Integral (PI) controller is developed using the LabVIEW graphical user programming language. Zigbee wireless technology is chosen for the wireless data transfer system. The experimental testbed was built and the system software and hardware were implemented. In order to compare the performance of the wired and wireless system, a corresponding wired water level control system was built. Experimental results show that under the same PI parameters, the settling time of the wired system is 3.3 times faster than the wireless system. However, the percent overshoot using the wireless controller is 4% smaller.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No.60525303)the National Natural Science Foundation of China(No.60904048,60404022,60604012)the Natural Science Foundation of Hebei Province(No.F2005000390,F2006000270)
文摘We consider the problem of fair rate control for wireless ad-hoc networks with time varying channel capacities. The interaction between links in wireless ad-hoc networks introduces additional constraints on the flow rate. A primal-dual algorithm that guarantees fair rate control is proved to be trajectory stable. Various fairness indexes are obtained by choosing the specified form of the utility functions, and the numerical results validate the effectiveness of the proposed algorithm.
文摘Mobility in Wireless Sensor Network (WSN) presents distinctive challenges in Medium Access Control (MAC) scheme. Numerous MAC protocols for sensor networks assume that sensor nodes are static and focus primarily on energy efficiency. This work seeks to develop an improved mobility conscious medium access control scheme for wireless sensor networks with a view to enhance energy conservation on mobile sensor nodes. On this note, mobility patterns of different scenarios are modelled using Gauss Markov Mobility Model (GMMM) to determine the position and distance of the sensor nodes and how they are correlated in time.
文摘Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,