In non-cooperative communication systems,wireless interference classification(WIC)is one of the most essential technologies.Recently,deep learning(DL)based WIC methods have been proposed.However,conventional DL-based ...In non-cooperative communication systems,wireless interference classification(WIC)is one of the most essential technologies.Recently,deep learning(DL)based WIC methods have been proposed.However,conventional DL-based WIC methods have high computational complexity and unsatisfactory accuracy,especially when the interference-tonoise ratio(INR)is low.To this end,we propose three effective approaches.Firstly,we introduce multibranch convolutional neural networks(CNNs)for interference recognition.The multi-branch CNN is constructed by repeating a layer that aggregates several transformations with the same topology,and it notably improves the recognition ability for WIC.Our design avoids the carefully crafted selection of each transformation.Unfortunately,multi-branch CNNs are computationally expensive and memory-inefficient.To this end,we further propose Low complexity multibranch networks(LCMN),which are mathematically equivalent to multi-branch CNNs but maintain low computing costs and efficient inference.Thirdly,we present novel loss function,which encourages networks to have consistent prediction probabilities for samples with high visual similarities,resulting in increasing recognition accuracy of LCMN.Experimental results demonstrate the proposed methods consistently boost the classification performance of WIC without substantially increasing computational overhead compared to traditional DL-based methods.展开更多
Due to the energy and resource constraints of a wireless sensor node in a wireless sensor network (WSN), design of energy-efficient multipath routing protocols is a crucial concern for WSN applications. To provide hig...Due to the energy and resource constraints of a wireless sensor node in a wireless sensor network (WSN), design of energy-efficient multipath routing protocols is a crucial concern for WSN applications. To provide high-quality monitoring information, many WSN applications require high-rate data transmission. Multipath routing protocols are often used to increase the network transmission rate and throughput. Although large-scale WSN can be supported by high bandwidth backbone network, the WSN remains the bottleneck due to resource constraints of wireless sensors and the effects of wireless interference. In this paper, we propose a multipath energy-efficient routing protocol for WSN that considers wireless interference. In the proposed routing protocol, nodes in the interference zone of the discovered path are marked and not allowed to take part in the subsequent routing process. In this way, the quality of wireless communication is improved because the effects of wireless interference can be reduced as much as possible. The network load is distributed on multiple paths instead of concentrating on only one path, and node energy cost is more balanced for the entire wireless network. The routing protocol is simulated in NS2 software. Simulation result shows that the proposed routing protocol achieves lower energy cost and longer network lifetime than that in the literature.展开更多
Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a sma...Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.展开更多
The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clust...The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.展开更多
Providing each node with one or more multi-channel radios offers a promising avenue for enhancing the network capacity by simultaneously exploiting multiple non-overlapping channels through different radio interfaces ...Providing each node with one or more multi-channel radios offers a promising avenue for enhancing the network capacity by simultaneously exploiting multiple non-overlapping channels through different radio interfaces and mitigating interferences through proper channel assignment. However, it is quite challenging to effectively utilize multiple channels and/or multiple radios to maximize throughput capacity. The National Natural Science Foundation of China(NSFC) Project61128005 conducted comprehensive algorithmic-theoretic and queuing-theoretic studies of maximizing wireless networking capacity in multi-channel multi-radio(MC-MR) wireless networks under the protocol interference model and fundamentally advanced the state of the art. In addition, under the notoriously hard physical interference model, this project has taken initial algorithmic studies on maximizing the network capacity, with or without power control. We expect the new techniques and tools developed in this project will have wide applications in capacity planning, resource allocation and sharing, and protocol design for wireless networks, and will serve as the basis for future algorithm developments in wireless networks with advanced features, such as multi-input multi-output(MIMO) wireless networks.展开更多
Multiple description coding (MDC) generates multiple decodable bitstreams for a source to combat informa- tion loss. In this paper, multipath routing problem for two-description coded images is investigated for trad...Multiple description coding (MDC) generates multiple decodable bitstreams for a source to combat informa- tion loss. In this paper, multipath routing problem for two-description coded images is investigated for traditional and coded wireless networks without and with coding capability at intermediate nodes, respectively. Firstly, we formulate an interference-aware MDC multipath routing for traditional networks by employing a time-division link scheduling method to eliminate wireless interference, and ultimately obtain an optimal path selection corresponding to the minimum achievable distortion. Secondly, for coded networks, we evaluate practical wireless network coding (NC) in delivering descriptions of multiple unicast sessions. While NC increases maximum supporting flow rate of MDC descriptions in wireless networks, possible undecodability of NC mixed information is alleviated by MDC. To minimize achievable distortion, a proposed interference-and-coding-aware MDC multipath routing strikes a good balance between minimizing side effect of wireless interference avoidance and maximizing NC opportunity. Simulation results validate the effectiveness of the two proposed schemes.展开更多
文摘In non-cooperative communication systems,wireless interference classification(WIC)is one of the most essential technologies.Recently,deep learning(DL)based WIC methods have been proposed.However,conventional DL-based WIC methods have high computational complexity and unsatisfactory accuracy,especially when the interference-tonoise ratio(INR)is low.To this end,we propose three effective approaches.Firstly,we introduce multibranch convolutional neural networks(CNNs)for interference recognition.The multi-branch CNN is constructed by repeating a layer that aggregates several transformations with the same topology,and it notably improves the recognition ability for WIC.Our design avoids the carefully crafted selection of each transformation.Unfortunately,multi-branch CNNs are computationally expensive and memory-inefficient.To this end,we further propose Low complexity multibranch networks(LCMN),which are mathematically equivalent to multi-branch CNNs but maintain low computing costs and efficient inference.Thirdly,we present novel loss function,which encourages networks to have consistent prediction probabilities for samples with high visual similarities,resulting in increasing recognition accuracy of LCMN.Experimental results demonstrate the proposed methods consistently boost the classification performance of WIC without substantially increasing computational overhead compared to traditional DL-based methods.
基金supported by the National Natural Science Foundation of China (No. 60772055)the Liaoning Education Foundation (No. 2008S159,LS2010115)
文摘Due to the energy and resource constraints of a wireless sensor node in a wireless sensor network (WSN), design of energy-efficient multipath routing protocols is a crucial concern for WSN applications. To provide high-quality monitoring information, many WSN applications require high-rate data transmission. Multipath routing protocols are often used to increase the network transmission rate and throughput. Although large-scale WSN can be supported by high bandwidth backbone network, the WSN remains the bottleneck due to resource constraints of wireless sensors and the effects of wireless interference. In this paper, we propose a multipath energy-efficient routing protocol for WSN that considers wireless interference. In the proposed routing protocol, nodes in the interference zone of the discovered path are marked and not allowed to take part in the subsequent routing process. In this way, the quality of wireless communication is improved because the effects of wireless interference can be reduced as much as possible. The network load is distributed on multiple paths instead of concentrating on only one path, and node energy cost is more balanced for the entire wireless network. The routing protocol is simulated in NS2 software. Simulation result shows that the proposed routing protocol achieves lower energy cost and longer network lifetime than that in the literature.
基金supported by the National Natural Science Foundation of China (No.61074165 and No.61273064)Jilin Provincial Science & Technology Department Key Scientific and Technological Project (No.20140204034GX)Jilin Province Development and Reform Commission Project (No.2015Y043)
文摘Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.
文摘The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.
基金supported in part by the National Natural Science Foundation of China under Grant No.61128005
文摘Providing each node with one or more multi-channel radios offers a promising avenue for enhancing the network capacity by simultaneously exploiting multiple non-overlapping channels through different radio interfaces and mitigating interferences through proper channel assignment. However, it is quite challenging to effectively utilize multiple channels and/or multiple radios to maximize throughput capacity. The National Natural Science Foundation of China(NSFC) Project61128005 conducted comprehensive algorithmic-theoretic and queuing-theoretic studies of maximizing wireless networking capacity in multi-channel multi-radio(MC-MR) wireless networks under the protocol interference model and fundamentally advanced the state of the art. In addition, under the notoriously hard physical interference model, this project has taken initial algorithmic studies on maximizing the network capacity, with or without power control. We expect the new techniques and tools developed in this project will have wide applications in capacity planning, resource allocation and sharing, and protocol design for wireless networks, and will serve as the basis for future algorithm developments in wireless networks with advanced features, such as multi-input multi-output(MIMO) wireless networks.
基金partially supported by the Joint Research Fund for Overseas Chinese Scholars and Scholars in Hong Kong and Macao of the National Natural Science Foundation of China under Grant No.61228102
文摘Multiple description coding (MDC) generates multiple decodable bitstreams for a source to combat informa- tion loss. In this paper, multipath routing problem for two-description coded images is investigated for traditional and coded wireless networks without and with coding capability at intermediate nodes, respectively. Firstly, we formulate an interference-aware MDC multipath routing for traditional networks by employing a time-division link scheduling method to eliminate wireless interference, and ultimately obtain an optimal path selection corresponding to the minimum achievable distortion. Secondly, for coded networks, we evaluate practical wireless network coding (NC) in delivering descriptions of multiple unicast sessions. While NC increases maximum supporting flow rate of MDC descriptions in wireless networks, possible undecodability of NC mixed information is alleviated by MDC. To minimize achievable distortion, a proposed interference-and-coding-aware MDC multipath routing strikes a good balance between minimizing side effect of wireless interference avoidance and maximizing NC opportunity. Simulation results validate the effectiveness of the two proposed schemes.