A new optical wireless network based on white LED lights in home area is proposed. It is a duplex channel communication system utilizing signal emitters of white LED lights in the downlink and infrared devices in the ...A new optical wireless network based on white LED lights in home area is proposed. It is a duplex channel communication system utilizing signal emitters of white LED lights in the downlink and infrared devices in the uplink. Strategies for the system construction are given. Performance for users' mobile access of different kinds of optical concentrators is investigated. Indoor channel band-width is analyzed considering white LED light distribution, wall reflection, and receivers field of view (FOV). Various modulation methods are discussed. A demo point-to-point system for surfing the net is constructed using a new line code of 4B6B which is developed to stabilize the optical output, and a peak data rate of 1 Mbps is achieved. This system is built into the lighting infrastructure, therefore decreasing the cost and offering a solution for wireless access in places which are sensitive to radio frequency like hospitals.展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
Real-time video streaming using ultra-wideband(UWB) technology is experimentally demonstrated along long-reach passive optical networks(LR-PONs) with different wired and wireless reaches. Experimental tests using exte...Real-time video streaming using ultra-wideband(UWB) technology is experimentally demonstrated along long-reach passive optical networks(LR-PONs) with different wired and wireless reaches. Experimental tests using external and direct modulation with UWB wireless radiation in the 10- and 60-GHz bands are performed. An ultra-bendable fiber is also considered for a last-mile distribution. The video quality at the output of the optical fiber infrastructure of the LR-PON is assessed using the error vector magnitude(EVM), and the link quality indicator(LQI) is used as a figure of merit after wireless radiation. An EVM below –17 dB is achieved for both externally and directly modulated LR-PONs comprising up to 125 km of optical fiber. EVM improvement is observed for longer LR-PONs when directly modulated lasers(DMLs) are used because of the amplitude gain provided by the combined effect of dispersion and DML's chirp. Compared with optical back-to-back operation, the LQI level degrades to the maximum around 20% for LR-PONs ranging between 75 and 125 km of fiber reach and with a wireless coverage of 2 m in the 10-GHz UWB band. The same level of LQI degradation is observed using the 60-GHz UWB band with a LR-PON integrating 101 km of access network, a last-mile distribution using ultra-bendable fiber, and a 5.2-m wireless link.展开更多
文摘A new optical wireless network based on white LED lights in home area is proposed. It is a duplex channel communication system utilizing signal emitters of white LED lights in the downlink and infrared devices in the uplink. Strategies for the system construction are given. Performance for users' mobile access of different kinds of optical concentrators is investigated. Indoor channel band-width is analyzed considering white LED light distribution, wall reflection, and receivers field of view (FOV). Various modulation methods are discussed. A demo point-to-point system for surfing the net is constructed using a new line code of 4B6B which is developed to stabilize the optical output, and a peak data rate of 1 Mbps is achieved. This system is built into the lighting infrastructure, therefore decreasing the cost and offering a solution for wireless access in places which are sensitive to radio frequency like hospitals.
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
基金supported by the Fundao para a Ciência e a Tecnologia from Portugal under projects PEst-OE/EEI/LA0008/2013 and TURBO-PTDC/EEATEL/104358/2008by the European FIVER-FP7-ICT-2009-4-249142 project
文摘Real-time video streaming using ultra-wideband(UWB) technology is experimentally demonstrated along long-reach passive optical networks(LR-PONs) with different wired and wireless reaches. Experimental tests using external and direct modulation with UWB wireless radiation in the 10- and 60-GHz bands are performed. An ultra-bendable fiber is also considered for a last-mile distribution. The video quality at the output of the optical fiber infrastructure of the LR-PON is assessed using the error vector magnitude(EVM), and the link quality indicator(LQI) is used as a figure of merit after wireless radiation. An EVM below –17 dB is achieved for both externally and directly modulated LR-PONs comprising up to 125 km of optical fiber. EVM improvement is observed for longer LR-PONs when directly modulated lasers(DMLs) are used because of the amplitude gain provided by the combined effect of dispersion and DML's chirp. Compared with optical back-to-back operation, the LQI level degrades to the maximum around 20% for LR-PONs ranging between 75 and 125 km of fiber reach and with a wireless coverage of 2 m in the 10-GHz UWB band. The same level of LQI degradation is observed using the 60-GHz UWB band with a LR-PON integrating 101 km of access network, a last-mile distribution using ultra-bendable fiber, and a 5.2-m wireless link.