针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,...针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。展开更多
针对传统单个逆变器驱动的无线电能传输(wireless power transfer,WPT)系统输出功率有限的问题,提出了一种多逆变器模块并联驱动的大功率WPT系统,并对多逆变器模块并联的拓扑结构和各模块间的环流进行了分析。为了解决逆变器并联时产生...针对传统单个逆变器驱动的无线电能传输(wireless power transfer,WPT)系统输出功率有限的问题,提出了一种多逆变器模块并联驱动的大功率WPT系统,并对多逆变器模块并联的拓扑结构和各模块间的环流进行了分析。为了解决逆变器并联时产生的环流问题,提出了基于主从策略的相位同步控制方法,通过从逆变器输出电压和发送端电流相位差同步于主逆变器输出电压和发送端电流相位差实现逆变器模块间的相位差补偿。研制了三个逆变器模块并联驱动的WPT系统样机,实验结果表明,在500 V直流输入时,负载端获得功率约为20 kW,传输效率达94%,且各逆变器输出电压相位实现同步,证明了相位同步控制方法的有效性。展开更多
文摘针对现有无线电能与反向信号同步传输(simultaneous wireless power and reverse signal transmission,SWPRST)系统存在较大无功功率、负载电压易受信号传输发生波动或需要额外增加高频信号源等问题,提出一种基于谐波通讯的SWPRST技术,通过利用逆变器输出方波电压中的基波分量传输电能,三次谐波分量传输信号。不需要外加高频信号发射电路,实现了可靠的电能与反向信号同步传输。首先,给出基于谐波通讯的SWPRST系统结构,对其工作模式和基本原理进行分析;接着,建立系统等效数学模型,分析系统参数取值对信号与电能传输之间的互扰影响;然后,对信号的调制解调电路进行设计,分析信号检测通道参数对信号传输速率的影响;最后,搭建实验平台对理论分析进行验证,实验结果表明,该方法在有效实现了无线电能与反向信号同步传输的同时,信号无误码率传输速率可达5 kbps,同时系统具有无功小,输出负载电压几乎无波动(电压波动率0.33%)等优点。该方法采用谐波作为信号载体,为多频利用式实现电能与反向信号同步传输系统提供一种新的思路,具有较好的理论意义与实际工程应用价值。
文摘针对传统单个逆变器驱动的无线电能传输(wireless power transfer,WPT)系统输出功率有限的问题,提出了一种多逆变器模块并联驱动的大功率WPT系统,并对多逆变器模块并联的拓扑结构和各模块间的环流进行了分析。为了解决逆变器并联时产生的环流问题,提出了基于主从策略的相位同步控制方法,通过从逆变器输出电压和发送端电流相位差同步于主逆变器输出电压和发送端电流相位差实现逆变器模块间的相位差补偿。研制了三个逆变器模块并联驱动的WPT系统样机,实验结果表明,在500 V直流输入时,负载端获得功率约为20 kW,传输效率达94%,且各逆变器输出电压相位实现同步,证明了相位同步控制方法的有效性。