In MEC-enabled vehicular network with limited wireless resource and computation resource,stringent delay and high reliability requirements are challenging issues.In order to reduce the total delay in the network as we...In MEC-enabled vehicular network with limited wireless resource and computation resource,stringent delay and high reliability requirements are challenging issues.In order to reduce the total delay in the network as well as ensure the reliability of Vehicular UE(VUE),a Joint Allocation of Wireless resource and MEC Computing resource(JAWC)algorithm is proposed.The JAWC algorithm includes two steps:V2X links clustering and MEC computation resource scheduling.In the V2X links clustering,a Spectral Radius based Interference Cancellation scheme(SR-IC)is proposed to obtain the optimal resource allocation matrix.By converting the calculation of SINR into the calculation of matrix maximum row sum,the accumulated interference of VUE can be constrained and the the SINR calculation complexity can be effectively reduced.In the MEC computation resource scheduling,by transforming the original optimization problem into a convex problem,the optimal task offloading proportion of VUE and MEC computation resource allocation can be obtained.The simulation further demonstrates that the JAWC algorithm can significantly reduce the total delay as well as ensure the communication reliability of VUE in the MEC-enabled vehicular network.展开更多
Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicl...Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.展开更多
In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property ...In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method.展开更多
基金This work was supported in part by the National Key R&D Program of China under Grant 2019YFE0114000in part by the National Natural Science Foundation of China under Grant 61701042+1 种基金in part by the 111 Project of China(Grant No.B16006)the research foundation of Ministry of EducationChina Mobile under Grant MCM20180101.
文摘In MEC-enabled vehicular network with limited wireless resource and computation resource,stringent delay and high reliability requirements are challenging issues.In order to reduce the total delay in the network as well as ensure the reliability of Vehicular UE(VUE),a Joint Allocation of Wireless resource and MEC Computing resource(JAWC)algorithm is proposed.The JAWC algorithm includes two steps:V2X links clustering and MEC computation resource scheduling.In the V2X links clustering,a Spectral Radius based Interference Cancellation scheme(SR-IC)is proposed to obtain the optimal resource allocation matrix.By converting the calculation of SINR into the calculation of matrix maximum row sum,the accumulated interference of VUE can be constrained and the the SINR calculation complexity can be effectively reduced.In the MEC computation resource scheduling,by transforming the original optimization problem into a convex problem,the optimal task offloading proportion of VUE and MEC computation resource allocation can be obtained.The simulation further demonstrates that the JAWC algorithm can significantly reduce the total delay as well as ensure the communication reliability of VUE in the MEC-enabled vehicular network.
基金China Tele-com Research Institute Project(Grants No.HQBYG2200147GGN00)National Key R&D Program of China(2020YFB1807600)National Natural Science Foundation of China(NSFC)(Grant No.62022020).
文摘Connected autonomous vehicles(CAVs)are a promising paradigm for implementing intelligent transportation systems.However,in CAVs scenarios,the sensing blind areas cause serious safety hazards.Existing vehicle-to-vehicle(V2V)technology is difficult to break through the sensing blind area and ensure reliable sensing information.To overcome these problems,considering infrastructures as a means to extend the sensing range is feasible based on the integrated sensing and communication(ISAC)technology.The mmWave base station(mmBS)transmits multiple beams consisting of communication beams and sensing beams.The sensing beams are responsible for sensing objects within the CAVs blind area,while the communication beams are responsible for transmitting the sensed information to the CAVs.To reduce the impact of inter-beam interference,a joint multiple beamwidth and power allocation(JMBPA)algorithm is proposed.By maximizing the communication transmission rate under the sensing constraints.The proposed non-convex optimization problem is transformed into a standard difference of two convex functions(D.C.)problem.Finally,the superiority of the lutions.The average transmission rate of communication beams remains over 3.4 Gbps,showcasing a significant improvement compared to other algorithms.Moreover,the satisfaction of sensing services remains steady.
基金supported by the National Basic Research Program of China(No.2011CB302702)the NationalNatural Science Foundation of China(Nos.60803140,60970133,61070187)
文摘In the Internet of things, it is of critical importance to fully utilize the potential capacity of the network with efficient medium access control (MAC) mechanisms. In this paper, we study the convergence property of the fixed point formulation of distributed coordination function (DCF), which is widely used for medium access control in wireless networks. We first Kind that the fixed point could be repelling, which means that it is impossible for an MAC system to converge at its fixed point. Next, we show the existence of periodic points to prove that the fixed point function will oscillate between two periodic points when the fixed point is repelling. We also find that the average of the two periodic points is a close approximation of the fixed point. Based on the findings, we propose an algorithm to compute the fixed point efficiently. Simulation results verify the accuracy and efficiency of our algorithm compared with the previous fixed point computing method.