The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectual...[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.展开更多
The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication r...The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm.展开更多
In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after t...In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial deployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be employed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results demonstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the number of additional mobile nodes.展开更多
Existing works on data aggregation in wireless sensor networks (WSNs) usually use a single channel which results in a long latency due to high interference, especially in high-density networks. Therefore, data aggre- ...Existing works on data aggregation in wireless sensor networks (WSNs) usually use a single channel which results in a long latency due to high interference, especially in high-density networks. Therefore, data aggre- gation is a fundamental yet time-consuming task in WSNs. We present an improved algorithm to reduce data aggregation latency. Our algorithm has a latency bound of 16R + Δ – 11, where Δ is the maximum degree and R is the network radius. We prove that our algorithm has smaller latency than the algorithm in [1]. The simulation results show that our algorithm has much better performance in practice than previous works.展开更多
In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorith...In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorithm, APIT algorithm and Bounding Box algorithm are discussed. Simulation of those five localization algorithms is done by MATLAB. The simulation results show that the positioning error of Amorphous algorithm is the minimum. Considering economy and localization accuracy, the Amorphous algorithm can achieve the best localization performance under certain conditions.展开更多
A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communica...A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.展开更多
Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network co...Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network consisting of distributed devices distributed at various distances,which monitors the physical and environmental conditions using sensors.Wireless sensor networks have many uses,including the built-in sensor on the outside of the pipeline or installed to support bridge structures,robotics,healthcare,environmental monitoring,etc.Wireless Sensor networks could be used to monitor the temperature,pressure,leak detection and sabotage of transmission lines.Wireless sensor networks are vulnerable to various attacks.Cryptographic algorithms have a good role in information security for wireless sensor networks.Now,various types of cryptographic algorithms provide security in networks,but there are still some problems.In this research,to improve the power of these algorithms,a new hybrid encryption algorithm for monitoring energy transmission lines and increasing the security of wireless sensor networks is proposed.The proposed hybrid encryption algorithm provides the security and timely transmission of data in wireless sensor networks to monitor the transmission pipelines.The proposed algorithm fulfills three principles of cryptography:integrity,confidentiality and authentication.The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational.展开更多
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing ...In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.展开更多
Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource ut...Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource utilization.This paper focuses on optimizing the resource efficiency in UWSNs where underground relay nodes amplify and forward sensed data,received from the buried source nodes through a lossy soil medium,to the aboveground base station.A new algorithm called the Hybrid Chaotic Salp Swarm and Crossover(HCSSC)algorithm is proposed to obtain the optimal source and relay transmission powers to maximize the network resource efficiency.The proposed algorithm improves the standard Salp Swarm Algorithm(SSA)by considering a chaotic map to initialize the population along with performing the crossover technique in the position updates of salps.Through experimental results,the HCSSC algorithm proves its outstanding superiority to the standard SSA for resource efficiency optimization.Hence,the network’s lifetime is prolonged.Indeed,the proposed algorithm achieves an improvement performance of 23.6%and 20.4%for the resource efficiency and average remaining relay battery per transmission,respectively.Furthermore,simulation results demonstrate that the HCSSC algorithm proves its efficacy in the case of both equal and different node battery capacities.展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and accor...This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and according to recent studies, cluster formation is an appropriate solution for their achievement. To transmit aggregated data to the Base Station (BS), logical nodes called Cluster Heads (CHs) are required to relay data from the fixed-range sensing nodes located in the ground to high altitude aircraft. This study investigates the Genetic Algorithm (GA) as a dynamic technique to find optimum states. It is a simple framework that includes a proposed mathematical formula, which increasing in coverage is benchmarked against lifetime. Finally, the implementation of the proposed algorithm indicates a better efficiency compared to other simulated works.展开更多
As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big probl...As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.展开更多
The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot s...The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot spot”problem in WSNs,we propose an unequal clustering routing algorithm based on genetic algorithm(UCR-GA).In the cluster head election phase,the fitness function is constructed based on the residual energy,density and distance between nodes and base station,and the appropriate node is selected as the cluster head.In the data transmission phase,the cluster head selects single-hop or multi-hop communication mode according to the distance to the base station.After we comprehensively consider the residual energy of the cluster head and its communication energy consumption with the base station,an appropriate relay node is selected.The designed protocal is simulated under energy homogeneous and energy heterogeneity conditions,and the results show that the proposed routing protocal can effectively balance energy consumption,prolong the life cycle of network,and is appicable to heterogeneous networks.展开更多
This paper designs and implements an image transmission algorithm applied to plant information collection based on the wireless sensor network. It can effectively reduce the volume of transmitted data, low-energy, hig...This paper designs and implements an image transmission algorithm applied to plant information collection based on the wireless sensor network. It can effectively reduce the volume of transmitted data, low-energy, high-availability image compression algorithm. This algorithm mainly has two aspects of improvement measures: the first is to reduce the number of pixels that transmit images, from interlaced scanning to interlaced neighbor scanning;the second is to use JPEG image compression algorithm [1], changing the value of the quantization table in the algorithm [2]. After image compression, the image data volume is greatly reduced;the transmission efficiency is improved;and the problem of excessive data volume during image transmission is effectively solved.展开更多
During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which d...During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.展开更多
One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques ...One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.展开更多
Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor ...Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.展开更多
Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless se...Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless sensor networks.After studying AODV routing protocol,a new algorithm called Must is brought up.This paper introduces the background and algorithm theory of Must,and discusses the details about how to implement Must algorithm.At last,using network simulator(NS-2),the performance of Must is evaluated and compared with that of AODV.Simulation results show that the network using Must algorithm has perfect performance.展开更多
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
基金Supported by the Science and Technology Surface Project of Yunnan Province(2010ZC142)the Doctoral Foundation of Dali University(KYBS201015),the Scientific Research Program for College Students of Dali University~~
文摘[Objective] This study was to design an intelligent greenhouse real-time monitoring system based on the core technology of Internet of Things in order to meet the needs of agricultural informatization and intellectualization. [Method] Based on the application characteristics of Wireless Sensor Network (WSN), the intelligent greenhouse monitoring system was designed. And for the incompleteness strategy of load balancing in the Low-Energy Adaptive Clustering Hierarchy (LEACH), a Real- time Threshold Routing Algorithm (RTRA) was proposed. [Result] The performance of network lifetime and network delay of RTRA were tested in MATLAB and found that, within the same testing environment, RTRA can save nodes energy consumption, prolong network lifetime, and had better real-time performance than LEACH. The al- gorithm satisfies the crops' requirements on real-time and energy efficiency in the greenhouse system. [Conclusion] For the good performance on real-time, the de- signed intelligent greenhouse real-time monitoring system laid the foundation for the research and development of agricultural informatization and intellectualization.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project.
文摘The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm.
文摘In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial deployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be employed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results demonstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the number of additional mobile nodes.
文摘Existing works on data aggregation in wireless sensor networks (WSNs) usually use a single channel which results in a long latency due to high interference, especially in high-density networks. Therefore, data aggre- gation is a fundamental yet time-consuming task in WSNs. We present an improved algorithm to reduce data aggregation latency. Our algorithm has a latency bound of 16R + Δ – 11, where Δ is the maximum degree and R is the network radius. We prove that our algorithm has smaller latency than the algorithm in [1]. The simulation results show that our algorithm has much better performance in practice than previous works.
文摘In this paper, the self-localization problem is studied. It is one of the key technologies in wireless sensor networks (WSNs). And five localization algorithms: Centroid algorithm, Amorphous algorithm, DV-hop algorithm, APIT algorithm and Bounding Box algorithm are discussed. Simulation of those five localization algorithms is done by MATLAB. The simulation results show that the positioning error of Amorphous algorithm is the minimum. Considering economy and localization accuracy, the Amorphous algorithm can achieve the best localization performance under certain conditions.
文摘A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.
文摘Transmission pipelines are vulnerable to various accidents and acts of vandalism.Therefore,a reliable monitoring system is needed to secure the transmission pipelines.A wireless sensor network is a wireless network consisting of distributed devices distributed at various distances,which monitors the physical and environmental conditions using sensors.Wireless sensor networks have many uses,including the built-in sensor on the outside of the pipeline or installed to support bridge structures,robotics,healthcare,environmental monitoring,etc.Wireless Sensor networks could be used to monitor the temperature,pressure,leak detection and sabotage of transmission lines.Wireless sensor networks are vulnerable to various attacks.Cryptographic algorithms have a good role in information security for wireless sensor networks.Now,various types of cryptographic algorithms provide security in networks,but there are still some problems.In this research,to improve the power of these algorithms,a new hybrid encryption algorithm for monitoring energy transmission lines and increasing the security of wireless sensor networks is proposed.The proposed hybrid encryption algorithm provides the security and timely transmission of data in wireless sensor networks to monitor the transmission pipelines.The proposed algorithm fulfills three principles of cryptography:integrity,confidentiality and authentication.The details of the algorithm and basic concepts are presented in such a way that the algorithm can be operational.
基金Acknowledgements Supported by the Fundamental Research Funds for the Central Universities(72104988), The National High Technology Research and Development Program of China ( 2009AA01 Z204, 2007AA01Z429, 2007AA01Z405), The post doctor science foundation of China (20090451495, 20090461415) The National Natural science foundation of China (60874085, 60633020, 60803151 ), The Natural Science Basic Research Plan in Shaanxi Province of China (Program No. SJ08F13), The Aviation Sci- ence Foundation of China (2007ZD31003, 2008ZD31001 )
文摘In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Antcolony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.
文摘Resource management in Underground Wireless Sensor Networks(UWSNs)is one of the pillars to extend the network lifetime.An intriguing design goal for such networks is to achieve balanced energy and spectral resource utilization.This paper focuses on optimizing the resource efficiency in UWSNs where underground relay nodes amplify and forward sensed data,received from the buried source nodes through a lossy soil medium,to the aboveground base station.A new algorithm called the Hybrid Chaotic Salp Swarm and Crossover(HCSSC)algorithm is proposed to obtain the optimal source and relay transmission powers to maximize the network resource efficiency.The proposed algorithm improves the standard Salp Swarm Algorithm(SSA)by considering a chaotic map to initialize the population along with performing the crossover technique in the position updates of salps.Through experimental results,the HCSSC algorithm proves its outstanding superiority to the standard SSA for resource efficiency optimization.Hence,the network’s lifetime is prolonged.Indeed,the proposed algorithm achieves an improvement performance of 23.6%and 20.4%for the resource efficiency and average remaining relay battery per transmission,respectively.Furthermore,simulation results demonstrate that the HCSSC algorithm proves its efficacy in the case of both equal and different node battery capacities.
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.
文摘This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and according to recent studies, cluster formation is an appropriate solution for their achievement. To transmit aggregated data to the Base Station (BS), logical nodes called Cluster Heads (CHs) are required to relay data from the fixed-range sensing nodes located in the ground to high altitude aircraft. This study investigates the Genetic Algorithm (GA) as a dynamic technique to find optimum states. It is a simple framework that includes a proposed mathematical formula, which increasing in coverage is benchmarked against lifetime. Finally, the implementation of the proposed algorithm indicates a better efficiency compared to other simulated works.
文摘As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.
基金National Natural Science Foundation of China(No.61862038)Lanzhou Talent Innovation and Entrepreneurship Technology Plan Project(No.2019-RC-14)Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot spot”problem in WSNs,we propose an unequal clustering routing algorithm based on genetic algorithm(UCR-GA).In the cluster head election phase,the fitness function is constructed based on the residual energy,density and distance between nodes and base station,and the appropriate node is selected as the cluster head.In the data transmission phase,the cluster head selects single-hop or multi-hop communication mode according to the distance to the base station.After we comprehensively consider the residual energy of the cluster head and its communication energy consumption with the base station,an appropriate relay node is selected.The designed protocal is simulated under energy homogeneous and energy heterogeneity conditions,and the results show that the proposed routing protocal can effectively balance energy consumption,prolong the life cycle of network,and is appicable to heterogeneous networks.
文摘This paper designs and implements an image transmission algorithm applied to plant information collection based on the wireless sensor network. It can effectively reduce the volume of transmitted data, low-energy, high-availability image compression algorithm. This algorithm mainly has two aspects of improvement measures: the first is to reduce the number of pixels that transmit images, from interlaced scanning to interlaced neighbor scanning;the second is to use JPEG image compression algorithm [1], changing the value of the quantization table in the algorithm [2]. After image compression, the image data volume is greatly reduced;the transmission efficiency is improved;and the problem of excessive data volume during image transmission is effectively solved.
基金Supported by the National Natural Science Foundation of China (No.61003236 61171053)+2 种基金the Doctoral Fund of Ministry of Education of China (No.20113223110002)the Natural Science Major Program for Colleges and Universities in Jiangsu Province (No.11KJA520001)Science & Technology Innovation Fund for higher education institutions of Jiangsu Province (CXZZ12_0481)
文摘During range-based self-localization of Wireless Sensor Network (WSN) nodes, the number and placement methods of beacon nodes have a great influence on the accuracy of localization. This paper proves a theorem which describes the relationship between the placement of beacon nodes and whether the node can be located in 3D indoor environment. In fact, as the highest locating accuracy can be acquired when the beacon nodes form one or more equilateral triangles in 2D plane, we generalizes this conclusion to 3D space, and proposes a beacon nodes selection algorithm based on the minimum condition number to get the higher locating accuracy, which can minimize the influence of distance measurement error. Simulation results show that the algorithm is effective and feasible.
文摘One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.
文摘Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.
文摘Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless sensor networks.After studying AODV routing protocol,a new algorithm called Must is brought up.This paper introduces the background and algorithm theory of Must,and discusses the details about how to implement Must algorithm.At last,using network simulator(NS-2),the performance of Must is evaluated and compared with that of AODV.Simulation results show that the network using Must algorithm has perfect performance.