Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of c...In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.展开更多
In recent years,there has been a rapid growth in Underwater Wireless Sensor Networks(UWSNs).The focus of research in this area is now on solving the problems associated with large-scale UWSN.One of the major issues in...In recent years,there has been a rapid growth in Underwater Wireless Sensor Networks(UWSNs).The focus of research in this area is now on solving the problems associated with large-scale UWSN.One of the major issues in such a network is the localization of underwater nodes.Localization is required for tracking objects and detecting the target.It is also considered tagging of data where sensed contents are not found of any use without localization.This is useless for application until the position of sensed content is confirmed.This article’s major goal is to review and analyze underwater node localization to solve the localization issues in UWSN.The present paper describes various existing localization schemes and broadly categorizes these schemes as Centralized and Distributed localization schemes underwater.Also,a detailed subdivision of these localization schemes is given.Further,these localization schemes are compared from different perspectives.The detailed analysis of these schemes in terms of certain performance metrics has been discussed in this paper.At the end,the paper addresses several future directions for potential research in improving localization problems of UWSN.展开更多
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep...Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.展开更多
In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of W...In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of WSNs are distributed in an intimidating region,which is non-rigid to attacks.The recent research domains of WSN deal with models to handle the WSN communications against malicious attacks and threats.In traditional models,the solution has been made for defending the networks,only to specific attacks.However,in real-time applications,the kind of attack that is launched by the adversary is not known.Additionally,on developing a security mechanism for WSN,the resource constraints of sensor nodes are also to be considered.With that note,this paper presents an Enhanced Security Model with Improved Defensive Routing Mechanism(IDRM)for defending the sensor network from various attacks.Moreover,for efficient model design,the work includes the part of feature evaluation of some general attacks of WSNs.The IDRM also includes determination of optimal secure paths and Node security for secure routing operations.The performance of the proposed model is evaluated with respect to several factors;it is found that the model has achieved better security levels and is efficient than other existing models in WSN communications.It is proven that the proposed IDRM produces 74%of PDR in average and a minimized packet drop of 38%when comparing with the existing works.展开更多
Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and ...Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and memory storage due to the use of acoustic waves for communication,which results in long delays,significant power consumption,limited bandwidth,and packet loss.This paper provides a comprehensive review of the latest advancements in UWSNs,including essential services,common platforms,critical elements,and components such as localization algorithms,communication,synchronization,security,mobility,and applications.Despite significant progress,reliable and flexible solutions are needed to meet the evolving requirements of UWSNs.The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements,establishing a standard platform and service criteria,using a taxonomy to determine critical elements,and emphasizing important unresolved issues.展开更多
Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network ...Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime.展开更多
To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the conf...To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.展开更多
In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after t...In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial deployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be employed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results demonstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the number of additional mobile nodes.展开更多
For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm c...For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.展开更多
Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location i...Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average ocation error.展开更多
Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulne...Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.展开更多
The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important...The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.展开更多
Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is ...Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm.展开更多
In the wireless sensor networks(WSN),the sensor nodes have limited battery life and are deployed in hostile environments.It is very difficult to recharging or replacement of the batteries after deployment for the sens...In the wireless sensor networks(WSN),the sensor nodes have limited battery life and are deployed in hostile environments.It is very difficult to recharging or replacement of the batteries after deployment for the sensor nodes in inaccessible areas.Therefore,how to increase the network lifetime of the WSN is deserved to be studied.In this study,a WSN routing algorithm was proposed based on block clustering and springboard nodes to increase the network lifetime of the WSN.Firstly,by analyzing the influence of communication transmission distance on network energy consumption,block clustering was introduced to control node transmission distance in order to reduce total network energy consumption.In addition,a network transmission model was proposed based on springboard nodes and the advantages of network energy consumption of this model against multi-hop between clusters were analyzed.The simulation results show that,compared with the LEACH algorithm,EECPK-means algorithm and energy centroid clustering algorithm,the proposed routing algorithm effectively prolongs the network lifetime of WSN.展开更多
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
文摘In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Sensor Nodes(SNs)are a big challenge for ensuring their efficient and reliable operation.WSN data gathering involves the utilization of a mobile sink(MS)to mitigate the energy consumption problem through periodic network traversal.The mobile sink(MS)strategy minimizes energy consumption and latency by visiting the fewest nodes or predetermined locations called rendezvous points(RPs)instead of all cluster heads(CHs).CHs subsequently transmit packets to neighboring RPs.The unique determination of this study is the shortest path to reach RPs.As the mobile sink(MS)concept has emerged as a promising solution to the energy consumption problem in WSNs,caused by multi-hop data collection with static sinks.In this study,we proposed two novel hybrid algorithms,namely“ Reduced k-means based on Artificial Neural Network”(RkM-ANN)and“Delay Bound Reduced kmeans with ANN”(DBRkM-ANN)for designing a fast,efficient,and most proficient MS path depending upon rendezvous points(RPs).The first algorithm optimizes the MS’s latency,while the second considers the designing of delay-bound paths,also defined as the number of paths with delay over bound for the MS.Both methods use a weight function and k-means clustering to choose RPs in a way that maximizes efficiency and guarantees network-wide coverage.In addition,a method of using MS scheduling for efficient data collection is provided.Extensive simulations and comparisons to several existing algorithms have shown the effectiveness of the suggested methodologies over a wide range of performance indicators.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金National Natural Science Foundations of China (No.61073177,60905037)
文摘In wireless sensor networks(WSNs),nodes are usually powered by batteries.Since the energy consumption directly impacts the network lifespan,energy saving is a vital issue in WSNs,especially in the designing phase of cryptographic algorithms.As a complementary mechanism,reputation has been applied to WSNs.Different from most reputation schemes that were based on beta distribution,negative multinomial distribution was deduced and its feasibility in the reputation modeling was proved.Through comparison tests with beta distribution based reputation in terms of the update computation,results show that the proposed method in this research is more energy-efficient for the reputation update and thus can better prolong the lifespan of WSNs.
文摘In recent years,there has been a rapid growth in Underwater Wireless Sensor Networks(UWSNs).The focus of research in this area is now on solving the problems associated with large-scale UWSN.One of the major issues in such a network is the localization of underwater nodes.Localization is required for tracking objects and detecting the target.It is also considered tagging of data where sensed contents are not found of any use without localization.This is useless for application until the position of sensed content is confirmed.This article’s major goal is to review and analyze underwater node localization to solve the localization issues in UWSN.The present paper describes various existing localization schemes and broadly categorizes these schemes as Centralized and Distributed localization schemes underwater.Also,a detailed subdivision of these localization schemes is given.Further,these localization schemes are compared from different perspectives.The detailed analysis of these schemes in terms of certain performance metrics has been discussed in this paper.At the end,the paper addresses several future directions for potential research in improving localization problems of UWSN.
文摘Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.
文摘In recent scenario of Wireless Sensor Networks(WSNs),there are many application developed for handling sensitive and private data such as military information,surveillance data,tracking,etc.Hence,the sensor nodes of WSNs are distributed in an intimidating region,which is non-rigid to attacks.The recent research domains of WSN deal with models to handle the WSN communications against malicious attacks and threats.In traditional models,the solution has been made for defending the networks,only to specific attacks.However,in real-time applications,the kind of attack that is launched by the adversary is not known.Additionally,on developing a security mechanism for WSN,the resource constraints of sensor nodes are also to be considered.With that note,this paper presents an Enhanced Security Model with Improved Defensive Routing Mechanism(IDRM)for defending the sensor network from various attacks.Moreover,for efficient model design,the work includes the part of feature evaluation of some general attacks of WSNs.The IDRM also includes determination of optimal secure paths and Node security for secure routing operations.The performance of the proposed model is evaluated with respect to several factors;it is found that the model has achieved better security levels and is efficient than other existing models in WSN communications.It is proven that the proposed IDRM produces 74%of PDR in average and a minimized packet drop of 38%when comparing with the existing works.
文摘Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and memory storage due to the use of acoustic waves for communication,which results in long delays,significant power consumption,limited bandwidth,and packet loss.This paper provides a comprehensive review of the latest advancements in UWSNs,including essential services,common platforms,critical elements,and components such as localization algorithms,communication,synchronization,security,mobility,and applications.Despite significant progress,reliable and flexible solutions are needed to meet the evolving requirements of UWSNs.The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements,establishing a standard platform and service criteria,using a taxonomy to determine critical elements,and emphasizing important unresolved issues.
基金supported by the National Natural Science Foundation of China(61571068)the Innovative Research Projects of Colleges and Universities in Chongqing(12A19369)
文摘Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime.
基金supported by the National Basic Research Program of China(2007CB310703)the High Technical Research and Development Program of China(2008AA01Z201)+1 种基金the National Natural Science Foundlation of China(60821001,60802035,60973108)Chinese Universities Science Fund(BUPT2009RC0504)
文摘To reduce excessive computing and communication loads of traditional fault detection methods,a neighbor-data analysis based node fault detection method is proposed.First,historical data is analyzed to confirm the confidence level of sensor nodes.Then a node's reading data is compared with neighbor nodes' which are of good confidence level.Decision can be made whether this node is a failure or not.Simulation shows this method has good effect on fault detection accuracy and transient fault tolerance,and never transfers communication and computing overloading to sensor nodes.
文摘In hybrid wireless sensor networks composed of both static and mobile sensor nodes, the random deployment of stationary nodes may cause coverage holes in the sensing field. Hence, mobile sensor nodes are added after the initial deployment to overcome the coverage holes problem. To achieve optimal coverage, an efficient algorithm should be employed to find the best positions of the additional mobile nodes. This paper presents a genetic algorithm that searches for an optimal or near optimal solution to the coverage holes problem. The proposed algorithm determines the minimum number and the best locations of the mobile nodes that need to be added after the initial deployment of the stationary nodes. The performance of the genetic algorithm was evaluated using several metrics, and the simulation results demonstrated that the proposed algorithm can optimize the network coverage in terms of the overall coverage ratio and the number of additional mobile nodes.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2004AA001210) and the National Natural Science Foundation of China (No. 60532030).
文摘For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.
文摘Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average ocation error.
文摘Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme outperforms some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining comparable performance in malicious node detection rate and false alarm rate.
文摘The primary function of wireless sensor networks is to gather sensor data from the monitored area. Due to faults or malicious nodes, however, the sensor data collected or reported might be wrong. Hence it is important to detect events in the presence of wrong sensor readings and misleading reports. In this paper, we present a neighbor-based malicious node detection scheme for wireless sensor networks. Malicious nodes are modeled as faulty nodes behaving intelligently to lead to an incorrect decision or energy depletion without being easily detected. Each sensor node makes a decision on the fault status of itself and its neighboring nodes based on the sensor readings. Most erroneous readings due to transient faults are corrected by filtering, while nodes with permanent faults are removed using confidence-level evaluation, to improve malicious node detection rate and event detection accuracy. Each node maintains confidence levels of itself and its neighbors, indicating the track records in reporting past events correctly. Computer simulation shows that most of the malicious nodes reporting against their own readings are correctly detected unless they behave similar to the normal nodes. As a result, high event detection accuracy is also maintained while achieving low false alarm rate.
基金Project supported by the Shanghai Leading Academic Discipcine Project (Grant No.S30108)the National Natural Science Foundation of China (Grant No.60872021)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘Localization of the sensor nodes is a key supporting technology in wireless sensor networks (WSNs). In this paper, a real-time localization estimator of mobile node in WSNs based on extended Kalman filter (KF) is proposed. Mobile node movement model is analyzed and online sequential iterative method is used to compute location result. The detailed steps of mobile sensor node self-localization adopting extended Kalman filter (EKF) is designed. The simulation results show that the accuracy of the localization estimator scheme designed is better than those of maximum likelihood estimation (MLE) and traditional KF algorithm.
基金National Natural Science Foundation of China(Nos.61661025,61661026)。
文摘In the wireless sensor networks(WSN),the sensor nodes have limited battery life and are deployed in hostile environments.It is very difficult to recharging or replacement of the batteries after deployment for the sensor nodes in inaccessible areas.Therefore,how to increase the network lifetime of the WSN is deserved to be studied.In this study,a WSN routing algorithm was proposed based on block clustering and springboard nodes to increase the network lifetime of the WSN.Firstly,by analyzing the influence of communication transmission distance on network energy consumption,block clustering was introduced to control node transmission distance in order to reduce total network energy consumption.In addition,a network transmission model was proposed based on springboard nodes and the advantages of network energy consumption of this model against multi-hop between clusters were analyzed.The simulation results show that,compared with the LEACH algorithm,EECPK-means algorithm and energy centroid clustering algorithm,the proposed routing algorithm effectively prolongs the network lifetime of WSN.