Objectives: Atlantoaxial dislocation remains a rare and serious condition with a high preoperative and postoperative morbidity and mortality. Its successful surgical management is still challenging and gratifying for ...Objectives: Atlantoaxial dislocation remains a rare and serious condition with a high preoperative and postoperative morbidity and mortality. Its successful surgical management is still challenging and gratifying for neurosurgeons. Several technics have been described such as wiring, trans articular screwing, C1C2 screwing with plate and screw introduced by Goel et al., and modified by insertion of polyaxially screw and rod many years later by Harms. Unavailability and expensiveness of upper cervical spine instrumentation device led us to C1C2 Wiring resulting in a good outcome. Finally, a quadriplegic patient with a more comfortable financial condition had ordered devices from abroad and benefit for Goel and Harms screwing technique and improved dramatically from ASIA A to ASIA E. Material and methods: This is a retrospective study of patients managed in our department by a same neurosurgeon from January 2019 to April 2024. Results: We defined 6 men and 1 woman with an average age of 33 years. Unrestrained driver in a rollover motor vehicle accident was most common. Only one patient was neurologically intact on admission. Neurovegetative disorders were noticed in one patient. Dislocation was associated to a fracture of the dens in two patients. Three patients have been successfully operated with remarkable outcome, mostly from ASIA A to E. Conclusion: C1C2 dislocation is a serious condition and C1C2 Wiring represents an effective and cheaper technic. Therefore, this technic should deserve consideration above all in low incomes countries when screwing devices are not available. Seatbelt should be demanded for motor vehicle drivers and passengers.展开更多
An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we p...An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we propose a contour expansion scheme to construct rough paths. Different wiring features of the switchgear are used to connect rough local paths. All the paths are represented in a uniform data structure and forma path network. Finally, an improved A* algorithm is used to search the wiring path between the components in the routing network; the evaluation model is considered as heuristic rules for path searching. The result can satisfy the practical requirements of switchgear design. Experimental results are also provided.展开更多
This paper introduces the necessity and superiority of auxiliary wiring WEBGIS, as well as system implementation difficulties and countermeasures. Then explained the general concept of auxiliary wiring systems, data i...This paper introduces the necessity and superiority of auxiliary wiring WEBGIS, as well as system implementation difficulties and countermeasures. Then explained the general concept of auxiliary wiring systems, data interface response, and finally introduced the system wiring switchover function, and gave an example.展开更多
Identifying each process and their constraint relations from the complex wiring harness drawings quickly and accurately is the basis for formulating process routes. According to the knowledge of automotive wiring harn...Identifying each process and their constraint relations from the complex wiring harness drawings quickly and accurately is the basis for formulating process routes. According to the knowledge of automotive wiring harness and the characteristics of wiring harness components, we established the model of wiring harness graph. Then we research the algorithm of identifying technology processes automatically, finally we describe the relationships between processes by introducing the constraint matrix, which is in or- der to lay a good foundation for harness process planning and production scheduling.展开更多
MASEGO Dibetle, an information and communications technology (ICT) student at Tshwane University of Technology in South Africa, looks utterly delighted. Over the last two weeks, the 20-year-old has met with world le...MASEGO Dibetle, an information and communications technology (ICT) student at Tshwane University of Technology in South Africa, looks utterly delighted. Over the last two weeks, the 20-year-old has met with world leading experts in her field of study and visited state-of-the-art laboratories during her first trip to China.展开更多
Purpose:Intramedullary nailing is the preferred internal fixation technique for the treatment of subtrochanteric fractures because of its biomechanical advantages.However,no definitive conclusion has been reached rega...Purpose:Intramedullary nailing is the preferred internal fixation technique for the treatment of subtrochanteric fractures because of its biomechanical advantages.However,no definitive conclusion has been reached regarding whether combined cable cerclage is required during intramedullary nailing treatment.This study is performed to compare the clinical effects of intramedullary nailing with cerclage and non-cerclage wiring in the treatment of irreducible spiral subtrochanteric fractures.Methods:Patients with subtrochanteric fractures admitted to our center from January 2013 to December 2021 were retrospectively analyzed.The patients were enrolled in the case-control study according to the inclusion and exclusion criteria and divided into the non-cerclage group and the cerclage group.The patients'clinical data,including the operative time,intraoperative blood loss,hospital stay,reoperation rate,fracture union time,and Harris hip score,were compared between these 2 groups.Categorical variables were compared using Chi-square or Fisher's exact test.Continuous variables with normal distribution were presented as mean±standard deviation and analyzed with Student's t-test.Nonnormally distributed variables were expressed as median(Q_(1),Q_(3))and assessed using the Mann-Whitney test.A p<0.05 was considered significant.Results:In total,69 patients were included in the study(35 patients in the non-cerclage group and 34 patients in the cerclage group).The baseline data of the 2 groups were comparable.There were no significant difference in the length of hospital stay(z=-0.391,p=0.696),operative time(z=-1.289,p=0.197),or intraoperative blood loss(z=-1.321,p=0.186).However,compared with non-cerclage group,the fracture union time was shorter(z=-5.587,p<0.001),the rate of nonunion was lower(χ^(2)=6.030,p=0.03),the anatomical reduction rate was higher(χ^(2)=5.449,p=0.03),and the Harris hip score was higher(z=-2.99,p=0.003)in the cerclage group,all with statistically significant differences.Conclusions:Intramedullary nailing combined with cable cerclage wiring is a safe and reliable technique for the treatment of irreducible subtrochanteric fractures.This technique can improve the reduction effect,increase the stability of fracture fixation,shorten the fracture union time,reduce the occurrence of nonunion,and contribute to the recovery of hip joint function.展开更多
Monofilament type of polyaromatic amide(PA)and carbon nanotube(CNT)composite fibers is presented.A concept of a lyotropic liquid crystal(LLC)constructed via a spontaneous self-assembly is introduced to mitigate the ex...Monofilament type of polyaromatic amide(PA)and carbon nanotube(CNT)composite fibers is presented.A concept of a lyotropic liquid crystal(LLC)constructed via a spontaneous self-assembly is introduced to mitigate the extremely low com-patibility between PA and CNT.These approaches provide an effective co-processing route of PA and CNT simultaneously to fabricate the uniform,continuous,and reliable composite fibers through a wet-spinning.Interestingly,the addition of a small amount PA into the dope solution of CNT governs the LLC mesophase not only in a spinneret stage but also in a coagulant region.Thus,the developed PA/CNT composite fibers have the high uniaxial orientational order and the close interfacial packing compared to the pure CNT fibers.The PA/CNT composite fibers achieve the outstanding tensile strength,electrical conductivity,and electrochemical response,while maintaining a lightweight.They also exhibit the chemical,mechanical,and thermal robustness.All of these advantages can make flexible,sewable,and washable PA/CNT composite fibers ideal nanocomposite materials for use in next-generation information and energy transporting system by replacing conventional metal electrical conductors.展开更多
This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghan...This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghanaian wiring standards. The research assesses key factors influencing safety, including the certification of electricians, the quality of cable brands used, proper cable sizing, adherence to wiring color codes, the awareness and use of Residual Current Circuit Breakers (RCCBs), and the protection of earth electrodes. A descriptive research design was utilized, involving extensive field surveys and electrical installation audits. Data were collected using standardized tools and analyzed with SPSS software to evaluate the professional competencies of artisans and their adherence to safety standards. The findings indicate significant safety risks, with 69.7% of electricians lacking proper certification, leading to the widespread use of non-approved cable brands, improper cable sizing, and deviations from wiring color codes. Additionally, deficiencies were found in the awareness and use of RCCBs and the protection of earth electrodes. The study concludes with recommendations to enhance electrical safety, including mandatory certification for electricians, public awareness campaigns, regular inspections, and ongoing training and development programs. These measures are crucial for improving the overall safety and quality of electrical installations in the Suame area, Ghana.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
Purpose: Tension band wiring is commonly used for fixation of simple transverse fractures. The popular configuration is parallel Kirschner wires (K-wires) and a stainless steel wire loop placed in a vertically orie...Purpose: Tension band wiring is commonly used for fixation of simple transverse fractures. The popular configuration is parallel Kirschner wires (K-wires) and a stainless steel wire loop placed in a vertically oriented figure-of-8. Methods: We used a wooden model of a patella with a midway transverse fracture and compared four different types of fixation. The first construct had a vertical figure-of-8 with one twist of wire. The second contained a vertical figure-of-8 with two twists of wire. The third was a vertical figure-of-8 with two twists of wire placed at adjacent corners while the last one had a horizontal figure-of-8 with two twists of wire placed at adjacent corners, lnterfragmentary compression at the point of wire breakage was measured for each construct as well as permanent displacement on cyclic loading. Results: Placement of the figure-of-eight in a horizontal orientation with two wire twists at the corner improved interfragmentary compression by 63% (p 〈 0.05, Tukey post ]hoc test). On cyclic loading, all the constructs with vertical figure-of-eight but none with a horizontal construct failed (p = 0.01; Fisher's exact test). Permanent fracture displacement after cyclic loading was ,57% lower with horizontal figure- of-eight constructs (p 〈 0.05; t test). Conclusion: Placing wire twists at the corner and a horizontal placement of figure-of-8 improves stability of the construct.展开更多
After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,M...After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micr...A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.展开更多
To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel as...To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel assembly.This study conducted detailed comparisons between traditional and new pattern fuel assembly rod bundles utilizing the open-source computational fluid dynamics platform,OpenFOAM.The results indicated that the new design may significantly reduce the pressure drop along the rod bundle,which is beneficial for lowering the pressure drop.Furthermore,this new design improved coolant mixing in the subchannels,which facilitated a more uniform temperature distribution and lower thermal gradients at the assembly outlet.These factors collectively reduced the thermal fatigue and creep in nearby internal components.Overall,the newpattern fuel assembly proposed in this study may have better heat transfer performance,thereby enhancing the Integrated Thermal-Hydraulic Factor by 48.2% compared to the traditional pattern.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve...Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
文摘Objectives: Atlantoaxial dislocation remains a rare and serious condition with a high preoperative and postoperative morbidity and mortality. Its successful surgical management is still challenging and gratifying for neurosurgeons. Several technics have been described such as wiring, trans articular screwing, C1C2 screwing with plate and screw introduced by Goel et al., and modified by insertion of polyaxially screw and rod many years later by Harms. Unavailability and expensiveness of upper cervical spine instrumentation device led us to C1C2 Wiring resulting in a good outcome. Finally, a quadriplegic patient with a more comfortable financial condition had ordered devices from abroad and benefit for Goel and Harms screwing technique and improved dramatically from ASIA A to ASIA E. Material and methods: This is a retrospective study of patients managed in our department by a same neurosurgeon from January 2019 to April 2024. Results: We defined 6 men and 1 woman with an average age of 33 years. Unrestrained driver in a rollover motor vehicle accident was most common. Only one patient was neurologically intact on admission. Neurovegetative disorders were noticed in one patient. Dislocation was associated to a fracture of the dens in two patients. Three patients have been successfully operated with remarkable outcome, mostly from ASIA A to E. Conclusion: C1C2 dislocation is a serious condition and C1C2 Wiring represents an effective and cheaper technic. Therefore, this technic should deserve consideration above all in low incomes countries when screwing devices are not available. Seatbelt should be demanded for motor vehicle drivers and passengers.
基金Supported by National Key Technologies R&D Program of China(2015BAF23B03)National Nature Science Foundation of China(61672307)
文摘An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we propose a contour expansion scheme to construct rough paths. Different wiring features of the switchgear are used to connect rough local paths. All the paths are represented in a uniform data structure and forma path network. Finally, an improved A* algorithm is used to search the wiring path between the components in the routing network; the evaluation model is considered as heuristic rules for path searching. The result can satisfy the practical requirements of switchgear design. Experimental results are also provided.
文摘This paper introduces the necessity and superiority of auxiliary wiring WEBGIS, as well as system implementation difficulties and countermeasures. Then explained the general concept of auxiliary wiring systems, data interface response, and finally introduced the system wiring switchover function, and gave an example.
基金Supported by Chinese national Science Foundation (61070124)the Fundamental Research Funds for the Central Universities (2012HGBZ0195)
文摘Identifying each process and their constraint relations from the complex wiring harness drawings quickly and accurately is the basis for formulating process routes. According to the knowledge of automotive wiring harness and the characteristics of wiring harness components, we established the model of wiring harness graph. Then we research the algorithm of identifying technology processes automatically, finally we describe the relationships between processes by introducing the constraint matrix, which is in or- der to lay a good foundation for harness process planning and production scheduling.
文摘MASEGO Dibetle, an information and communications technology (ICT) student at Tshwane University of Technology in South Africa, looks utterly delighted. Over the last two weeks, the 20-year-old has met with world leading experts in her field of study and visited state-of-the-art laboratories during her first trip to China.
文摘Purpose:Intramedullary nailing is the preferred internal fixation technique for the treatment of subtrochanteric fractures because of its biomechanical advantages.However,no definitive conclusion has been reached regarding whether combined cable cerclage is required during intramedullary nailing treatment.This study is performed to compare the clinical effects of intramedullary nailing with cerclage and non-cerclage wiring in the treatment of irreducible spiral subtrochanteric fractures.Methods:Patients with subtrochanteric fractures admitted to our center from January 2013 to December 2021 were retrospectively analyzed.The patients were enrolled in the case-control study according to the inclusion and exclusion criteria and divided into the non-cerclage group and the cerclage group.The patients'clinical data,including the operative time,intraoperative blood loss,hospital stay,reoperation rate,fracture union time,and Harris hip score,were compared between these 2 groups.Categorical variables were compared using Chi-square or Fisher's exact test.Continuous variables with normal distribution were presented as mean±standard deviation and analyzed with Student's t-test.Nonnormally distributed variables were expressed as median(Q_(1),Q_(3))and assessed using the Mann-Whitney test.A p<0.05 was considered significant.Results:In total,69 patients were included in the study(35 patients in the non-cerclage group and 34 patients in the cerclage group).The baseline data of the 2 groups were comparable.There were no significant difference in the length of hospital stay(z=-0.391,p=0.696),operative time(z=-1.289,p=0.197),or intraoperative blood loss(z=-1.321,p=0.186).However,compared with non-cerclage group,the fracture union time was shorter(z=-5.587,p<0.001),the rate of nonunion was lower(χ^(2)=6.030,p=0.03),the anatomical reduction rate was higher(χ^(2)=5.449,p=0.03),and the Harris hip score was higher(z=-2.99,p=0.003)in the cerclage group,all with statistically significant differences.Conclusions:Intramedullary nailing combined with cable cerclage wiring is a safe and reliable technique for the treatment of irreducible subtrochanteric fractures.This technique can improve the reduction effect,increase the stability of fracture fixation,shorten the fracture union time,reduce the occurrence of nonunion,and contribute to the recovery of hip joint function.
基金supported by Korea Institute of Science and Technology(KIST)Open Research Program(ORP)and K-Lab Program,and grants from Mid-Career Researcher Program(2021R1A2C2009423)Korea Government MSIT(2021R1R1R1004226)Korea Research Institute for defense Technology planning and advancement(DAPA KRIT-CT-21-014).
文摘Monofilament type of polyaromatic amide(PA)and carbon nanotube(CNT)composite fibers is presented.A concept of a lyotropic liquid crystal(LLC)constructed via a spontaneous self-assembly is introduced to mitigate the extremely low com-patibility between PA and CNT.These approaches provide an effective co-processing route of PA and CNT simultaneously to fabricate the uniform,continuous,and reliable composite fibers through a wet-spinning.Interestingly,the addition of a small amount PA into the dope solution of CNT governs the LLC mesophase not only in a spinneret stage but also in a coagulant region.Thus,the developed PA/CNT composite fibers have the high uniaxial orientational order and the close interfacial packing compared to the pure CNT fibers.The PA/CNT composite fibers achieve the outstanding tensile strength,electrical conductivity,and electrochemical response,while maintaining a lightweight.They also exhibit the chemical,mechanical,and thermal robustness.All of these advantages can make flexible,sewable,and washable PA/CNT composite fibers ideal nanocomposite materials for use in next-generation information and energy transporting system by replacing conventional metal electrical conductors.
文摘This study aims to evaluate the safety status of electrical installations in residential and commercial buildings within the Suame ECG strategic business unit, Ghana, focusing on compliance with international and Ghanaian wiring standards. The research assesses key factors influencing safety, including the certification of electricians, the quality of cable brands used, proper cable sizing, adherence to wiring color codes, the awareness and use of Residual Current Circuit Breakers (RCCBs), and the protection of earth electrodes. A descriptive research design was utilized, involving extensive field surveys and electrical installation audits. Data were collected using standardized tools and analyzed with SPSS software to evaluate the professional competencies of artisans and their adherence to safety standards. The findings indicate significant safety risks, with 69.7% of electricians lacking proper certification, leading to the widespread use of non-approved cable brands, improper cable sizing, and deviations from wiring color codes. Additionally, deficiencies were found in the awareness and use of RCCBs and the protection of earth electrodes. The study concludes with recommendations to enhance electrical safety, including mandatory certification for electricians, public awareness campaigns, regular inspections, and ongoing training and development programs. These measures are crucial for improving the overall safety and quality of electrical installations in the Suame area, Ghana.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
文摘Purpose: Tension band wiring is commonly used for fixation of simple transverse fractures. The popular configuration is parallel Kirschner wires (K-wires) and a stainless steel wire loop placed in a vertically oriented figure-of-8. Methods: We used a wooden model of a patella with a midway transverse fracture and compared four different types of fixation. The first construct had a vertical figure-of-8 with one twist of wire. The second contained a vertical figure-of-8 with two twists of wire. The third was a vertical figure-of-8 with two twists of wire placed at adjacent corners while the last one had a horizontal figure-of-8 with two twists of wire placed at adjacent corners, lnterfragmentary compression at the point of wire breakage was measured for each construct as well as permanent displacement on cyclic loading. Results: Placement of the figure-of-eight in a horizontal orientation with two wire twists at the corner improved interfragmentary compression by 63% (p 〈 0.05, Tukey post ]hoc test). On cyclic loading, all the constructs with vertical figure-of-eight but none with a horizontal construct failed (p = 0.01; Fisher's exact test). Permanent fracture displacement after cyclic loading was ,57% lower with horizontal figure- of-eight constructs (p 〈 0.05; t test). Conclusion: Placing wire twists at the corner and a horizontal placement of figure-of-8 improves stability of the construct.
基金Theme-based research scheme of Hong Kong Research Grant Council(RGC Ref:T13-402/17-N)National Natural Science Foundation of China(No.U1804251)。
文摘After reconstructing the anterior cruciate ligament(ACL),unsatisfactory bone tendon interface healing may often induce tunnel enlargement at the early healing stage.With good biological features and high formability,Magnesium-Zinc-Gadolinium(ZG21)wires are developed to bunch the tendon graft for matching the bone tunnel during transplantation.Microstructure,tensile strength,degradation,and cytotoxicity of ZG21 wire are evaluated.The rabbit model is used for assessing the biological effects of ZG21 wire by Micro-CT,histology,and mechanical test.The SEM/EDS,immunochemistry,and in vitro assessments are performed to investigate the underlying mechanism.Material tests demonstrate the high formability of ZG21 wire as surgical suture.Micro-CT shows ZG21 wire degradation accelerates tunnel bone formation,and histologically with earlier and more fibrocartilage regeneration at the healing interface.The mechanical test shows higher ultimate load in the ZG21 group.The SEM/EDS presents ZG21 wire degradation triggered calcium phosphate(Ca-P)deposition.IHC results demonstrate upregulation of Wnt3a,BMP2,and VEGF at the early phase and TGFβ3 and Type II collagen at the late phase of healing.In vitro tests also confirmed the Ca-P in the metal extract could elevate the expression of Wnt3a,βcatenin,ocn and opn to stimulate osteogenesis.Ex vivo tests of clinical samples indicated suturing with ZG21 wire did not weaken the ultimate loading of human tendon tissue.In conclusion,the ZG21 wire is feasible for tendon graft bunching.Its degradation products accelerated intra-tunnel endochondral ossification at the early healing stage and therefore enhanced bone-tendon interface healing in ACL reconstruction.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金the National Natural Science Foundation of China(Nos.U21A2051,52173297,52071133)the R&D Projects of Henan Academy of Sciences of China(No.220910009)+2 种基金the Key R&D and Promotion Projects of Henan Province of China(No.212102210441)the Joint Fund of Henan Science and Technology R&D Plan of China(No.222103810037)the Zhongyuan Scholar Workstation Funded Project of China(No.214400510028).
文摘A crystal plasticity finite element model was developed for the drawing deformation of pure copper micro wire,based on rate-dependent crystal plasticity theory.The impact of wire diameter compression ratio on the micro-mechanical deformation behavior during the wire drawing process was investigated.Results indicate that the internal deformation and slip of the drawn wire are unevenly distributed,forming distinct slip and non-slip zones.Additionally,horizontal strain concentration bands develop within the drawn wire.As the wire diameter compression ratio increases,the strength of the slip systems and the extent of slip zones inside the deformation zone also increase.However,the fluctuating stress state,induced by contact pressure and frictional stress,results in a rough and uneven wire surface and diminishes the stability of the drawing process.
基金supported partly by the Ministry of Science and Technology of the People’s Republic of China(No.2020YFB1902100)the China Postdoctoral Science Foundation(No.2023M731458)+3 种基金the Science and Technology Program of Gansu ProvinceChina(No.23JRRA1099)the Postdoctoral Fellowship Program of CPSF(No.GZB20230278)financially supported by the Shanghai Municipal Commission of Economy and Informatization(No.GYQJ-2018-2-02)。
文摘To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel assembly.This study conducted detailed comparisons between traditional and new pattern fuel assembly rod bundles utilizing the open-source computational fluid dynamics platform,OpenFOAM.The results indicated that the new design may significantly reduce the pressure drop along the rod bundle,which is beneficial for lowering the pressure drop.Furthermore,this new design improved coolant mixing in the subchannels,which facilitated a more uniform temperature distribution and lower thermal gradients at the assembly outlet.These factors collectively reduced the thermal fatigue and creep in nearby internal components.Overall,the newpattern fuel assembly proposed in this study may have better heat transfer performance,thereby enhancing the Integrated Thermal-Hydraulic Factor by 48.2% compared to the traditional pattern.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(2022JH-ZDZH-0039)International Science and Technology Cooperation Program of Shaanxi Province (2023-GHZD-50)+9 种基金Project of Qin Chuangyuan ‘Scientist+Engineer’team constructionKey R&D plan of Shaanxi Province (S2023-YF-QCYK-0001-237)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an (2022JH-ZDZH-0039)National Natural Science Foundation of China (52101134)Natural Science Foundation of Guangdong Province (2022A1515010275)Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0479)Doctoral Dissertations Innovation Fund of Xi’an University of Technology (101-252072305)Research Start-up Project of Xi’an University of Technology(101-256082204)Natural Science Foundation of Shaanxi Province (2023-JC-QN-0573)Natural Science Basic Research Program of Shaanxi(2023-JC-YB-412)
文摘Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.