期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
CUTTING REGULARITY AND DISCHARGE CHARACTERISTICS BY USING COMPOSITE COOLING LIQUID IN WIRE CUT ELECTRICAL DISCHARGE MACHINE WITH HIGH WIRE TRAVELING SPEED 被引量:11
1
作者 LIU Zhidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期41-45,共5页
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte... The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid. 展开更多
关键词 Wire cut electrical discharge machine with high wire traveling speed Composite cooling liquid Discharge characteristic Cutting regularity
下载PDF
Overview of the Rectangular Wire Windings AC Electrical Machine 被引量:3
2
作者 Yu Zhao Dawei Li +1 位作者 Tonghao Pei Ronghai Qu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期160-169,共10页
The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so... The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected. 展开更多
关键词 AC copper losses the rectangular wire winding AC electrical machine process craft winding connection.
下载PDF
Influence of Input Factors on Surface Roughness and Material Removal Speed when Wire-EDM a Hardened SKD11 Steel Curve Profile
3
作者 Tran Quoc Hung Nguyen Van Trang 《Journal of Environmental Science and Engineering(B)》 2023年第5期220-229,共10页
The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective func... The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective function includes reducing surface roughness and increasing MRR(Material Removal Rate).The optimization process is prepared by using Taguchi method coupled Grey Relational Analysis.The obtained results revealed that Toff has the greatest influence on the average grey value(48.30%),followed by the influence of WF(Wire Feed,15.99%),VM(Cutting Voltage,9.33%),SV(Server Voltage,5.05%),Ton(Pulse on Time,1.81%),while SPD(Cutting Speed)has a negligible effect(0.89%).Moreover,using the optimal set of machining parameters generates in surface roughness of 1.25399mm and MRR of 26.5562 mm^(2)/min.The verification experiment and Anderson-Darling method demonstrate the validity of the proposed model,which can be utilized for estimating surface roughness and MRR. 展开更多
关键词 Wire Electrical Discharge Machining WIRE-EDM surface roughness Material Removal Speed SKD11.
下载PDF
Machine-vision-based electrode wear analysis for closed loop wire EDM process control
4
作者 P.M.Abhilash D.Chakradhar 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第1期131-142,共12页
The purpose of this study was to develop a closed-loop machine vision system for wire electrical discharge machining(EDM)process control.Excessive wire wear leading to wire breakage is the primary cause of wire EDM pr... The purpose of this study was to develop a closed-loop machine vision system for wire electrical discharge machining(EDM)process control.Excessive wire wear leading to wire breakage is the primary cause of wire EDM process failures.Such process interruptions are undesirable because they affect cost efficiency,surface quality,and process sustainability.The developed system monitors wire wear using an image-processing algorithm and suggests parametric changes according to the severity of the wire wear.Microscopic images of the wire electrode coming out from the machining zone are fed to the system as raw images.In the proposed method,the images are preprocessed and enhanced to obtain a binary image that is used to compute the wire wear ratio(WWR).The input parameters that are adjusted to recover from the unstable conditions that cause excessive wire wear are pulse off time,servo voltage,and wire feed rate.The algorithm successfully predicted wire breakage events.In addition,the alternative parametric settings proposed by the control algorithm were successful in reducing the wire wear to safe limits,thereby preventing wire breakage interruptions. 展开更多
关键词 Wire electrical discharge machining(WEDM) machine vision Image processing Wire wear Wire electrode Wire breakage Inconel 718Process control
原文传递
Precision wire electrochemical machining of thick structures in powder superalloy René88DT using a partially insulated tube electrode
5
作者 Cheng Tang Zhao Han +1 位作者 Zhong-Qi Zhou Xiao-Long Fang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第4期618-635,共18页
Wire electrochemical machining(WECM)is a potential method for manufacturing macrostructures from difficult-to-cut materials,such as turbine slots,with good surface integrity and low costs.In this study,a novel tube el... Wire electrochemical machining(WECM)is a potential method for manufacturing macrostructures from difficult-to-cut materials,such as turbine slots,with good surface integrity and low costs.In this study,a novel tube electrode with array holes in the front and insulation in the back was applied using WECM to improve the machining precision and efficiency.Additionally,assisted by an immersion electrolyte and axial flushing,the electrolyte-deficient gap was supplemented to achieve the cutting of a very thick workpiece.The simulation results indicated that this method could effectively reduce the machining gap and improve the uniformity of the electric-and flow-field distributions.Experiments verified that when the uninsulated range(machining angle)was reduced from 360°to 90°,the side machining gap was reduced from 462.5µm to 175µm.Finally,using optimized machining parameters,array slits with gaps as small as(175±10)μm were machined on a powder superalloy René88DT sample with a thickness of 10 mm at a feed rate of 16µm/s.The feasibility of fabricating complex profiles using this method was verified using a self-designed servo device. 展开更多
关键词 Wire electrochemical machining(WECM) Tube electrode Partial insulation Machining angle Electrolyte flushing Surface quality
原文传递
Wire electrochemical machining with axial electrolyte flushing for titanium alloy 被引量:19
6
作者 Qu Ningsong Fang Xiaolong +2 位作者 Li Wei Zeng Yongbin Zhu Di 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期224-229,共6页
Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabri... Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM. 展开更多
关键词 Axial electrolyte flushing Electro machining Electrochemical machining Titanium alloy Wire electrochemical machining
原文传递
Effect of assisted transverse magnetic field on distortion behavior of thin-walled components in WEDM process 被引量:2
7
作者 Yanming ZHANG Guojun ZHANG +2 位作者 Zhen ZHANG Yi ZHANG Yu HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期291-307,共17页
Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WED... Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WEDM-LS)is one of typical non-contact machining processes without macro cutting force,which does well in removing hardness and brittleness materials via pulsed discharge at high temperature,but few researchers have studied the thermal distortion behavior leading to a considerable geometric error in the WEDM-LS of thin-walled components.In this paper,a transverse magnetic field assisted method is applied for affecting the uniformity of discharge point distribution so as to reduce the distortion in WEDM-LS processing thin-wall component.First,the generation mechanism of this new distortion behavior and the impact mechanism of transverse magnetic field(TMF)on distortion are demonstrated by theoretical analysis.In order to further figure out the distortion behavior in the TMF-WEDM process,a new thermophysical model considering the discharge point distribution is established to simulate temperature field,residual stress field and distortion profiles.Then a large number of Taguchi experiments are carried out to investigate the influences of process parameters including pulse discharge energy(pulse on time,pulse off time,and current)and magnetic field strength on distortion in WEDM-LS.To comparatively analyze simulated and experimental results,the accuracy of established thermophysical model is verified within a relative error of 18.38%in distortion.Moreover,it can be revealed that transverse magnetic field contribute to significantly improve the longitudinal distribution uniformity with maximum increase of 12.32%at magnetic field strength:0.15 T,leading to significant reductions of 32.77%in distortion and 22.68%in recast layer.Eventually,we also presented the variation of residual stress and recast layer along thickness direction under different distortion behavior,which are in good agreement with that of distortion behavior. 展开更多
关键词 Distortion behavior Distribution of discharge points Thin-walled components Transverse magnetic field Wire electrical discharge machining
原文传递
Electrical Discharge Machining of Al2024-65 vol%SiC Composites 被引量:1
8
作者 Wen-Shu Yang Guo-Qin Chen +4 位作者 Ping Wu Murid Hussain Jia-Bing Song Rong-Hua Dong Gao-Hui Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第5期447-455,共9页
In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined co... In the present work, the wire electrical discharge machining(WEDM) process of the 65 vol% SiCp/2024 Al composite prepared by pressure infiltration methods has been investigated. The microstructure of the machined composite was characterized by scanning electron microscope, the average surface roughness(Ra), X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy(TEM) techniques. Three zones from the surface to the interior(melting zone, heat affected zone and un-affected zone) were found in the machined composites, while the face of SiC particles on the surface toward the outside was ‘‘cut'' to be flat. Increase in Al and Si but decrease in C and O were observed in the core areas of the removed particles. Si phase, which was generated due to the decomposition of SiC, was detected after the WEDM process. The irregular and spherical particles were further observed by TEM. Based on the microstructure observation, it is suggested that the machining mechanism of 65 vol% SiCp/2024 Al composite was the combination of the melting of Al matrix and the decomposition of SiC particles. 展开更多
关键词 Metal matrix composites SiCp/Al composite Metal infiltration Wire electrical discharge machining(WEDM) SiC decomposition Machining mechanism
原文传递
Analysis and optimization of sustainable machining of AISI O1 tool steel by the wire-EDM process
9
作者 Carmita Camposeco-Negrete 《Advances in Manufacturing》 SCIE EI CAS CSCD 2021年第2期304-317,共14页
Wire electrical discharge machining(wire-EDM)is an energy-intensive process,and its success relies on a correct selection of cutting parameters.It is vital to optimize energy consumption,along with productivity and qu... Wire electrical discharge machining(wire-EDM)is an energy-intensive process,and its success relies on a correct selection of cutting parameters.It is vital to optimize energy consumption,along with productivity and quality.This experimental study optimized three parameters in wire-EDM:pulse-on time,servo voltage,and voltage concerning machining time,electric power,total energy consumption,surface roughness,and material removal rate.Two different plate thicknesses(15.88 mm and 25.4 mm)were machined.An orthogonal array,signal-to-noise ratio,and means graphs,and an analysis of vari-ance(ANOVA),determine the effects and contribution of cutting parameters on responses.Pulse-on time is the most significant factor for almost all variables,with a percentage of contribution higher than 50%.Multi-objective optimization is conducted to accomplish a concurrent decrease in all variables.A case study is proposed to compute carbon dioxide(CO_(2))tons and electricity cost in wire-EDM,using cutting parameters from multi-objective optimization and starting values commonly employed to cut that tool steel.A sustainable manufacturing approach reduced 5.91%of the electricity cost and CO_(2)tons when machining the thin plate,and these responses were diminished by 14.09%for the thicker plate.Therefore,it is possible to enhance the sustainability of the process without decreasing its productivity and quality. 展开更多
关键词 Wire electrical discharge machining(wire-EDM) Optimization Taguchi Desirability analysis SUSTAINABILITY
原文传递
Prediction and analysis of process failures by ANN classification during wire-EDM of Inconel 718
10
作者 Abhilash P.M. Chakradhar D. 《Advances in Manufacturing》 SCIE EI CAS CSCD 2020年第4期519-536,共18页
Wire breakages and spark absence are two typical machining failures that occur during wire electric discharge machining(wire-EDM),if appropriate parameter settings are not maintained.Even after several attempts to opt... Wire breakages and spark absence are two typical machining failures that occur during wire electric discharge machining(wire-EDM),if appropriate parameter settings are not maintained.Even after several attempts to optimize the process,machining failures cannot be eliminated completely.A n offline classification model is presented herein to predict machining failures.The aim of the current study is to develop a multiclass classification model using an artificial neural network(ANN).The training dataset comprises 81 full factorial experiments with three levels of pulse-on time,pulse-off time,servo voltage,and wire feed rate as input parameters.The classes are labeled as normal machining,spark absence,and wire breakage.The model accuracy is tested by conducting 20 confirmation experiments,and the model is discovered to be 95%accurate in classifying the machining outcomes.The effects of process parameters on the process failures are discussed and analyzed.A microstructural analysis of the machined surface and worn wire surface is conducted.The developed model proved to be an easy and fast solution for verifying and eliminating process failures. 展开更多
关键词 Wire electric discharge machining(wire-EDM) Process failure Spark absence Wire breakage Artificial neural network(ANN)classification Failure prediction
原文传递
Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm
11
作者 Rakesh Chaudhari Jay J.Vora +3 位作者 S.S.Mani Prabu I.A.Palani Vivek K.Patel D.M.Parikh 《Advances in Manufacturing》 SCIE EI CAS CSCD 2021年第1期64-80,共17页
Machining of shape memory alloys(SMAs)without losing the shape memory effect could immensely extend their applications.Herein,the wire electric discharge machining process was used to machine NiTi—a shape memory allo... Machining of shape memory alloys(SMAs)without losing the shape memory effect could immensely extend their applications.Herein,the wire electric discharge machining process was used to machine NiTi—a shape memory alloy.The experimental methodology was designed using a Box-Behnken design approach of the response surface methodology.The effects of input variables including pulse on time,pulse off time,and current were investigated on the material removal rate,surface roughness,and microhardness.ANOVA tests were performed to check the robustness of the generated empirical models.Optimization of the process parameters was performed using a newly formulated,highly efficient heat transfer search algorithm.Validation tests were conducted and extended for analyzing the retention of the shape memory effect of the machined surface by differential scanning calorimetry.In addition,2D and 3D Pareto curves were generated that indicated the trade-offs between the selected output variables during the simultaneous output variables using the multi-objective heat transfer search algorithm.The optimization route yielded encouraging results.Single objective optimization yielded a maximum material removal rate of 1.49 mm^(3)/s,maximum microhardness 462.52 HVN,and minimum surface roughness 0.11μm.The Pareto curves showed conflicting effects during the wire electric discharge machining of the shape memory alloy and presented a set of optimal non-dominant solutions.The shape memory alloy machined using the optimized process parameters even indicated a shape memory effect similar to that of the starting base material. 展开更多
关键词 Shape memory alloy(SMA) Nitinol Wire electrical discharge machining(WEDM) Heat transfer search algorithm Differential scanning calorimetry(DSC)test Shape memory effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部